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Abstract
Since the discovery of leptin in 1994, the adipose tissue (AT) is not just considered a passive fat storage organ but also an
extremely active secretory and endocrine organ that secretes a large variety of hormones, called adipokines, involved in energy
metabolism. Adipokines may not only contribute to AT dysfunction and obesity, but also in fat browning, a process that induces a
phenotypic switch from energy-storing white adipocytes to thermogenic brown fat–like cells. The fat browning process and,
consequently, thermogenesis can also be stimulated by physical exercise. Contracting skeletal muscle is a metabolically active
tissue that participates in several endocrine functions through the production of bioactive factors, collectively termed myokines,
proposed as the mediators of physical activity–induced health benefits. Myokines affect muscle mass, have profound effects on
glucose and lipid metabolism, and promote browning and thermogenesis of white AT in an endocrine and/or paracrine manner.
The present review focuses on the role of different myokines and adipokines in the regulation of fat browning, as well as in the
potential cross-talk between AT and skeletal muscle, in order to control body weight, energy expenditure and thermogenesis.
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Abbreviations
AgRP Agouti gene–related protein
ARC Arcuate nucleus
AT Adipose tissue
BAT Brown adipose tissue
CART Cocaine-amphetamine-regulated-transcript
CK Cytokine
CNS Central nervous system
MSC Mesenchymal stem cells

MSTN Myostatin
NPY Neuropeptide Y
PDGFR-α Platelet-derived growth factor receptor α
Pgc-1α Peroxisome proliferator–activated

receptor γ coactivator-1 α
PKA Protein kinase A
POMC Proopiomelanocortin
Ppar-γ Peroxisome proliferator–activated receptor-γ
PRDM16 PR domain-containing 16

Key points
• Myokines are secreted and regulate physiological processes in an
endocrine manner.
• The adipose tissue releases adipokines involved in the energy
homeostasis.
•Myokines regulate fat browning with their activity being modulated by
adipokines.
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PVN Paraventricular nucleus
Tnf-α Tumour necrosis factor-α
Ucp-1 Uncoupling protein 1
VTA Ventral tegmental area
WAT White adipose tissue

Introduction

Obesity spreads across the globe and has become an interna-
tional public health issue, affecting the quality of life and
being associated with many chronic diseases and early mor-
tality [47, 136]. This complex chronic disease has a multifac-
torial aetiology, including genetic, epigenetic, physiological,
behavioural, sociocultural and environmental factors, leading
to an imbalance between energy intake and expenditure dur-
ing an extended period [49, 91].

The metabolic health benefits of physical activity and ex-
ercise are well-described [131, 148]. A sedentary lifestyle or
periods of low-intensity physical activity result in excess ab-
dominal and visceral adiposity, which are associated with a
higher risk of type 2 diabetes, impaired lipid metabolism and
loss of muscle mass. By contrast, greater physical activity is
associated with a lower risk of developing several chronic
diseases and promotes multiple beneficial health effects [33].
The mechanisms underlying exercise-induced changes are
complex to analyse since exercise is an intricate process, si-
multaneously involving integrative and adaptive responses in
multiple tissues and organs at both cellular and systemic
levels. Nevertheless, the energy expended in physical activity
is often insufficient to counterbalance the excessive caloric
consumption. Exercise results in multiple changes in several
organs, including effects on the cardiovascular system, skele-
tal muscle, adipose tissue (AT) and bone.

The skeletal muscle is a large, highly plastic and adap-
tive organ that is critical to maintaining whole-body insu-
lin sensitivity and metabolic homeostasis. It exhibits no-
table metabolic adaptations to exercise, including mito-
chondrial biogenesis, angiogenesis and improved sub-
strate metabolism, but the mechanisms are still unclear
[54]. During the last decade, it has been suggested that
metabolic benefits of physical activity could be mediated
by cytokines or cell-signalling proteins secreted in re-
sponse to exercise that can regulate in an autocrine, para-
crine and endocrine manner the function of muscle and
other organs [103]. In this line, the skeletal muscle has
emerged as an extremely active endocrine organ that se-
cretes a huge variety of cytokines, chemokines, growth
factors, hormones and vasoactive factors, collectively
termed myokines, proposed as the mediators of physical
activity–induced health benefits. Myostatin (MSTN, also
known as growth differentiation factor 8) was the first
secreted factor to accomplish the criteria of a myokine,

being recognised as an endogenous inhibitor of muscle
growth. Mstn-null mice exhibit a hypertrophic and hyper-
plastic skeletal muscle together with a suppression of
body fat accumulation, suggesting an important cross-
talk between the skeletal muscle and fat depots [12, 90].
In this regard, several studies demonstrate that endurance
training, in addition to prevent insulin resistance in
humans, can affect both muscle and AT mass in normal
and obese animals and humans [126].

Different proteomics studies focused on the secretome of
the skeletal muscle have identified numerous myokines with
pleiotropic effects exerting their actions within the muscle
itself or through systemic effects, including the liver, the AT
and the immune system [99, 106]. In this sense, many
myokines are known to be important endocrine mediators in
the field of metabolic homeostasis through actions on AT.

Since the identification of leptin in 1994, the AT is not just
considered a passive organ with functions including energy
storage, heat insulation and mechanical protection. To date,
AT is considered a highly dynamic endocrine organ that pro-
duces and releases bioactive factors, collectively known as
adipokines, involved in the regulation of many physiological
functions, including energy metabolism [19, 57, 58].

Fat browning

AT is considered an active participant in controlling the
physiological and pathological processes associated to
obesity [58]. AT has been traditionally subclassified into
white AT (WAT) and brown AT (BAT), with clearly dif-
ferentiated functions: WAT stores extra energy in the form
of triglycerides, whereas BAT plays an important role in
thermoregulatory heat production (nonshivering thermo-
genesis) and in diet-induced thermogenesis through the
activation of the mitochondrial uncoupling protein UCP-
1, which uncouples ATP production dissipating energy as
heat [46]. The adipokines produced by WAT are involved
in the regulation of many physiological functions, includ-
ing fat browning, a process that induces a phenotypic
switch from energy-storing white adipocytes to thermo-
genic brown fat–like cells. Both ATs present significant
transcriptional, secretory, morphological and metabolic
differences [1, 40, 41, 81]. The existence of brown fat–
like cells that emerge within white fat pads, being desig-
nated as brite (corresponding to the contraction of “brown
in white”) or beige cells, has been reported [149].

WAT is predominantly composed of white adipocytes (35–
70%), although other cell types in the stroma-vascular fraction
including immune, endothelial and smooth muscle cells
among others are found [31]. Triglycerides, the major cellular
constituent of the adipocytes, are stored in a large unilocular
lipid droplet, occupying 80–90% of the cell volume and
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conferring them an ivory or yellow colour [48]. The nucleus
and the thin cytoplasmic rim are displaced to the periphery of
the adipocyte near the plasma membrane. White adipocytes
are found in subcutaneous, abdominal, retroperitoneal, ingui-
nal and gonadal fat depots [115, 133]. Brown fat cells, as
mentioned above, also store energy in the form of triglyceride
(TG), but in multiple small multilocular lipid droplets. The
cytoplasm contains a central nucleus as well as large spherical
mitochondria packedwith laminar cristae, conferring the char-
acteristic brown colour to the tissue. BAT is characterised by a
highly sympathetic innervation and an extensive vascularisa-
tion [26]. In this regard, the plasma membrane protein
calsyntenin 3β (CLSTN3β), highly expressed in thermogenic
adipocytes, has a key role in the functional sympathetic inner-
vation [153]. For many years, BATwas considered physiolog-
ically important only in small animals and newborns, allowing
the adaptation to a cold environment by adaptive thermogen-
esis. Nonetheless, studies with positron-emission tomography
integrated with computed tomography (18F-FDG PET/CT)
“rediscovered” the presence of functional and metabolically
active BAT in different anatomical locations of human adults,
particularly in the neck and supraclavicular regions [97, 123,
138, 143]. The activity and prevalence of BAT are inversely
correlated with body mass index and white fat mass, evidenc-
ing an inverse relationship between its activity and obesity
[138, 140]. These findings have revitalised the research on
brown fat and the attempts to use it as a potential therapy
against obesity [46].

The brown-like adipocytes discovered in WAT resemble
white fat cells in morphology and gene expression patterns
during basal states, but assume an intermediate appearance
upon prolonged stimuli such as cold exposure, β-adrenergic
stimulation or peroxisome proliferator–activated receptor
(PPAR)-γ agonist treatment [102]. Furthermore, the thigh
AT (tAT) has been recently identified as a naturally-existing
beige adipose depot that, unlike WATs, conserves beige fat
morphology even at room temperature and expresses key
genes that promote energy expenditure in a higher extent than
inguinal WAT [22]. The clusters of beige adipocytes exhibit
multilocular lipid droplets surrounding large ones, being
transformed (in a process called “browning” or “britening”)
in multilocular adipocytes with high mitochondrial content
and a comparative thermogenic potential to brown fat cells,
including UCP1, cell death–inducing DNA fragmentation fac-
tor alpha-like effector A (CIDEA) or PPAR-γ coactivator 1-α
(PGC-1α). Brown fat cells express high levels of UCP1 under
basal (unstimulated) conditions, whereas beige adipocytes
maintain their thermogenic programme only in response to a
constant stimulation [104]. Despite sharing the functional fea-
ture to undergo thermogenesis, many differences between
brown and beige adipocytes exist that have to be considered,
including their cellular origin.

Cellular origin

Both white and brown fat cells are derived from mesen-
chymal stem cells (MSC), although it is supposed they
originate from different precursor cells [112]. The myo-
genic regulatory factor Myf5 plays a key role in the dif-
ferentiation since MSC can be committed to either a myo-
genic lineage (Myf5-positive cells) or an adipogenic line-
age (Myf5-negative cells). Both brown adipocytes and
myocytes arise from MSC of the paraxial mesoderm that
expresses the myogenic transcription factor Myf5,
exhibiting a muscle-like gene signature [2, 128]. The tran-
scription factor PR domain-containing 16 (PRDM16),
necessary to promote BAT adipogenesis, selectively con-
trols the bidirectional cell fate switch between myoblasts
and brown fat cells. In this context, PRDM16 deficiency
in cultured brown adipocytes inhibits brown adipogenesis
and increases the expression of muscle genes [3, 128].

Although beige adipocytes arising in WATshare many of
themorphological and functional features of brown fat cells,
they are ontogenically different from those of the classic
interscapular BAT [104, 129]. The precise origin of the dis-
tinct cells found inWAT is still a topic of intense discussion.
Himms-Hagen et al. showed thatmultilocularmitochondria-
rich adipocytes appear in WATwithout dividing [62]. Cinti
et al. observed beige adipocytes appearing as clusters of
multilocular cells in WAT in response to cold or β-
adrenergic agonists, revealing that under certain conditions,
white adipocytes can transdifferentiate into brown adipo-
cytes, evidencing the plasticity of the adipose organ [124].
In fact, in vivo lineage-tracing studies in transgenic mice
confirmed the concept of transdifferentiation, supporting
the idea that the thermogenic profile of beige adipocytes is
reversible: beige adipocytes may lose UCP1 expression and
gain white-adipocyte-specific gene expression profiles after
a period of warm adaptation [118]. Wang and Scherer, using
fate-mapping analyses in mice, showed that most beige adi-
pocytes arise from adipogenic precursor cells in white fat
pads through de novo differentiation rather than from pre-
existing adipocytes [146]. Furthermore, lineage-tracing ex-
periments performed by Lee et al. provided evidence that the
induced brown adipocytes in WATare derived from a popu-
lation of cells that express platelet-derived growth factor re-
ceptor α (PDGFRα). This precursor can differentiate into
either beige or white adipocytes depending on the environ-
mental demand with β-adrenergic activators stimulating
beige adipocyte developmentwhereas high-fat feeding caus-
ing differentiation into white adipocytes. These bipotential
adipocyte progenitors are morphologically flexible and
might transdifferentiate when challenged with whitening or
browning stimuli [129]. PDGFRβ has also been reported to
mark beige mouse adipocyte progenitors [144]. In this line,
the progenitor pool with dominant PDGFRα expression
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generates beige adipocytes, whereas white adipocytes raises
from the progenitor pool with dominant PDGFRβ expres-
sion [52]. Noteworthy, recently, glycolytic beige fat cells
have been identified by Kajumura et al. [25]. Thermal stress
induces progenitor cell plasticity, and the new called glyco-
lytic beige adipocytes are formed via a myogenic state
through GA-binding proteinα as a transcriptional regulator.
The capacity of browning varies depending on the WAT de-
pot, with subcutaneous and perirenalWATbeingmore prone
for the formation of brite adipocytes than epidydimal/
perigonadal WAT [130]. Strikingly, at least a subset of beige
cells arises from a smooth muscle–like origin [86].

Transcriptional regulation of browning

The general programme of white and brown fat cell differen-
tiation shares molecular components involved in their devel-
opment and/or function including the transcription factor
PPARγ or members of the CCAAT/enhancer-binding protein
(C/EBP) transcription family. However, numerous signalling
pathways involved in the emergence of brown-like adipocytes
in WAT exist. The master regulator of adipocyte differentia-
tion PPARγ is intimately involved in the regulation of brown
adipocyte–selective characteristics of adipocytes. The recruit-
ment of the PGC-1α/PPARγ complex is implicated in brown-
like-induced adipocytes and mitochondrial biogenesis inWAT
through agonists of PPARγ and the NAD-dependent
deacetylase sirtuin 1 (SIRT1) [100]. Deacetylation of
PPARγ is required to stabilise and recruit the coactivator
PRDM16, leading to induction of the brown fat transcriptional
programme through interactions with the mediator subunit
(MED)-1 [60, 65, 109]. Furthermore, PRDM16 is required
to supress the expression of many white fat genes and in the
β-adrenergic-induced browning of subcutaneous WAT [130].
Recent studies have identified Krüppel-like factor 11 (KLF11)
as another important mediator for the activation and mainte-
nance of the brite selective gene programme [85]. Tumour
growth factor β (TGF-β) together with different members of
the bone morphogenetic protein (BMP) family, part of the
TGF-β superfamily, are also involved in the induction of a
brown adipocyte–like cell structure and function, such as
BMP4 [108], BMP7 [9, 101] and BMP8b [87, 147]. Nuclear
retinoid receptors [72], forkhead box C2 (FOXC2) [20, 51]
and C/EBP family of transcription factors [50, 69] are also
implicated in reprogramming white adipocytes towards brown
fat differentiation.

Besides the transcriptional regulation, the endocrine and
locally secreted factors originated from different organs in
the periphery are also important regulators of fat browning,
including myokines and adipokines. This review summarises
the potential positive effects of exercise-induced myokines, as
well as adipokines, on fat browning.

Myokines and fat browning

Regular physical activity or exercise training is associated
with health benefits, including the improvement of cardiovas-
cular health, type 2 diabetes, obesity and metabolic diseases
[116, 152]. The fat browning process and, consequently, ther-
mogenesis can be stimulated by physical exercise, and the
potential underlying mechanisms remain incompletely under-
stood. Physical exercise may trigger the browning process
through actions on the central nervous system (CNS) [5].
Nevertheless, physical activity might also regulate fat brow-
ning through myokines, important mediators of the health
benefits of exercise. Myokines may counteract the harmful
effects of pro-inflammatory adipokines secreted by AT during
physical inactivity, related to the chronic low-grade inflamma-
tory condition associated with obesity, and maintain the
whole-body homeostasis [103]. In this context, it is necessary
to emphasise that intense resistance exercise is also associated
with a transient inflammatory response and the release of pro-
inflammatory myokines such as IL-1, IL-6, IL-8, monocyte
chemoattractant protein-1 (MCP-1) or tumour necrosis
factor-α (TNF-α). This post-exercise inflammatory response
following acute resistance exercise represents a protective re-
sponse to a cellular disturbance or stress, enhancing processes
in muscle regeneration [15, 139]. Furthermore, endurance
training further stimulates the expression of PGC-1α, a coac-
tivator of PPAR-γ that not only modulates the expression of
UCP1 and thermogenesis in BAT but also controls mitochon-
drial biogenesis and oxidative metabolism in many cell types,
promoting multiple beneficial effects on health [107, 131].
Recently, screening of muscle cells overexpressing PGC-1α
has led to the identification of PGC-1α-dependent myokines
involved in promoting beige fat thermogenesis, including
irisin, β-aminoisobutyric acid (BAIBA), myostatin and
FGF-21 [11, 35, 52, 144] (Fig. 1).

Irisin

Irisin is a PGC-1α-dependent myokine that is cleaved from its
cellular form, fibronectin type III domain-containing protein 5
(FNDC5), a transmembrane precursor protein expressed in
rodent and human skeletal muscle [11]. Irisin from mice and
humans is 100% identical, suggesting a highly conserved
function. Irisin was identified as a myokine secreted into the
circulation following physical exercise, capable of stimulating
adipocyte browning of WAT and thermogenesis in both cul-
ture and in vivo [11]. The stimulation of primary subcutaneous
white adipocytes during differentiation with irisin increases
oxygen consumption together with an important induction of
Ucp1 mRNA and other brown fat–related genes, activating a
broad programme of brown fat–like development [11]. After
irisin administration in vivo through adenoviral vectors ex-
pressing full-length FNDC5, an increase in Ucp1 gene
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expression levels was detected, accompanied by an improve-
ment in energy expenditure, obesity and diet-induced insulin
resistance. The irisin-induced browning effect, characterised
by enhanced expression of brown fat–specific genes (Ucp1,

Pgc1a, Tmem26, Ebf3, Elovl3,Cidea and Cox7a), is mediated
via the activation of p38 mitogen-activated protein kinase
(p38 MAPK) and extracellular-regulated protein kinase
(ERK) pathways [89]. In this regard, a positive correlation
between basal levels of beige gene expression in subcutaneous
WAT and the levels of UCP1 expression in response to irisin
has been described [11, 111, 149]. The effects of irisin on the
thermogenic programme on fat cells are directly mediated by a
subset of integrins, especially those involving αV integrins
[73]. Additionally, irisin inhibits adipogenesis during differ-
entiation, reducing fat storage by suppressing formation of
new adipocytes [111].

Boström et al. suggested that irisin is responsible for some
of the beneficial effects of exercise and might constitute a
potential therapeutic tool for the treatment of metabolic disor-
ders. However, conflicting results emerged in human studies.
Whereas some studies exhibit that exercise-induced irisin may
stimulate WAT [11, 80], several well-conducted exercise in-
tervention studies have shown that long-term exercise does
not increase circulating irisin levels in humans [7, 14, 79]. It
should be taken into account that irisin might be influenced by
a number of phenotypic traits including increased adiposity,
lean mass and fasting plasma glucose that may partially ex-
plain these conflicting results.

A direct action of irisin on skeletal muscle accretion has
been reported by our group [145] and others [76] showing a
direct effect of irisin on the myoblast proliferative response,
upregulating myogenin and downregulating the myostatic

Fig. 2 A contracting skeletal muscle releases myokines, critical in
exercise-induced metabolic adaptations. Specifically, muscular irisin, β-
aminoisobutyric acid, myostatin, follistatin, decorin, meteorin-like, IL-6
and lactate lead to the induction of browning in WAT that can counteract
obesity and its associated metabolic diseases. Several adipokines derived
from adipose tissue, including leptin, fibroblast growth factor-21, zinc-

α2-glycoprotein and adiponectin, are also involved in white fat browning
and in the improvement of obesity-induced metabolic dysregulation. The
brown fat is also able to secrete different factors called batokines such as
prostaglandin, endothelin, IL-6, fibroblast growth factor-21, myostatin
and CXCL14, also capable to contribute to fat browning

Fig. 1 Physical activity regulates fat browning through the expression of
myokines, important mediators of the health benefits of exercise. The
principal signalling pathway activated in a contracting muscle during
physical exercise converges on PGC-1α by modulating PGC1a gene
expression and/or post-translational modifications of the PGC-1α pro-
tein. As a consequence, PGC-1α coordinates the transcriptional network
that stimulates mitochondrial biogenesis, angiogenesis and fibre type
switch, and regulates different metabolic gene programmes [11]. In this
line, PGC-1α stimulates the expression of several myokines involved in
WAT browning, providing a new basis to understand the molecular mech-
anisms underlying the beneficial effects of exercise training. BAIBA, β-
aminoisobutyric acid; FGF21, fibroblast growth factor 21; IL, interleukin;
METRNL, meteorin-like; MSTN, myostatin
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factors myostatin and dystrophin as well as the atrophy-related
atrogin-1/MAFBx1 and MuRF1 [76, 145]. Furthermore, an
increased metabolic rate in myocytes through irisin-mediated
induction of mitochondrial biogenesis with the subsequent
upregulation of mitochondrial genes (Tfam, Nrf1 and Ucp3)
[82] is also documented. The expression of the skeletal muscle
FNDC5 is positively regulated by leptin [145], follistatin [24]
and irisin itself [145], while being negatively regulated by
myostatin [4], SMAD3 [90], glucose and palmitate [78].

Irisin is not only secreted by skeletal muscle but also, to a
lesser extent, by AT, with an important autocrine and endo-
crine function [93, 113]. Short-term periods of exercise train-
ing induced FNDC5 secretion by WAT, being significantly
higher in visceral than in subcutaneous AT. Interestingly, en-
durance training in rats upregulates FNDC5/irisin in parallel
to the increased expression of brown and beige adipocyte
genes (Bmp7, Prdm16, Pgc1a, Cidea and Ucp1) in eWAT,
without affecting circulating irisin [114]. Myostatin and leptin
negatively regulate the gene expression levels of Fndc5 in the
AT [4, 52, 145]. A discordant regulation of FNDC5/irisin in
the skeletal muscle and WAT as well as a controversial re-
sponse to short-term exercise training and fasting exists.
However, no changes in FNDC5 expression or irisin secretion
from subcutaneous and visceral WAT depots were observed
by Tellerin et al. [137].

β-Aminoisobutyric acid

In line with these observations, Roberts et al. [144] sought to
determine whether any additional mechanisms exist in the
cross-talk between skeletal muscle and other metabolic or-
gans. They analysed metabolites that were secreted from
myocytes overexpressing PGC-1α and identified BAIBA, a
metabolite derived from valine and thymine catabolism. This
small myokine signals the positive effect of exercise from
skeletal muscle to other tissues in an endocrine manner. In
humans, BAIBA is released during muscle contraction in
physical activity, being inversely associated with metabolic
risk factors. BAIBA treatment in human-induced pluripotent
stem cells led to a brown adipocyte–like gene expression sig-
nature as well as an increased mitochondrial activity. Diet-
induced obese mice treated with BAIBA exhibited an in-
creased BAT-specific gene expression (Pgc1a, Ucp1, Cidea
and Cytc) together with a glucose tolerance improvement and
decreased weight loss. Furthermore, an enhanced β-oxidation
in hepatocytes, both in vivo and in vitro, is also observed after
BAIBA treatment. Van Kuilenburg et al. [153] also demon-
strated that the browning process as well as the β-oxidation in
hepatocytes induced by BAIBA involved specific PPARα-
dependent mechanisms.

The identification of BAIBA as an exercise-triggered sig-
nal and as a class of non-adrenergic activators of the

thermogenic programme in WAT opens up new therapeutic
possibilities for treating metabolic diseases.

Myostatin

MSTN, also termed growth/differentiation factor-8 (GDF-8),
is a member of the TGF-β superfamily that is predominantly
expressed and secreted bymuscle fibres that negatively affects
muscle growth and development [22]. Furthermore, MSTN
also regulates the proliferation and differentiation of muscle
stem cells and induces fibre-type switches [15, 25, 73, 137].
Overexpression of the Mstn gene is associated with lower
muscle mass and decreased fibre size [92]. By contrast, loss
of functional MSTN dramatically increased muscle mass in
both mice [34] and humans [127] as a result from a combina-
tion of muscle fibre hypertrophy and hyperplasia. MSTN de-
ficiency is also associated with suppression of body fat accu-
mulation, involving MSTN in the control of energy balance
beyond its effect on skeletal muscle [120]. Mstn-deficient
mice exhibit remarkable changes in epididymal WAT, includ-
ing elevated expression of genes involved in fatty acid oxida-
tion, mitochondrial biogenesis, lipid transport together with
the upregulation of key brown (Pgc1a, Ucp1, Prdm16,
Cidea andDio2)—and beige (Tmem26 and Cd137)—AT-spe-
cific genes, confirming the existence of beige cells. In this
regard, the observed browning phenotype in WAT of Mstn−/−

mice is achieved by AMPK phosphorylation, necessary to
induce the activation of PGC1α and FNDC5 [52, 120, 155].
MSTN post-transcriptionally suppresses, via a miR-34-
dependent mechanism, FNDC5/irisin expression and secre-
tion in white adipocytes. Loss of Mstn leads to decreased
miR-34a expression, which subsequently promotes Fndc5 ex-
pression, increasing thermogenic gene expression and brow-
ning in WAT [4].

Follistatin

Follistatin is a myostatin-binding glycoprotein that exerts an
essential role in skeletal muscle development antagonising
several members of the TGF-β superfamily including
MSTN and activin A [10, 132]. Accordingly, targeted deletion
of the gene encoding follistatin (Fst) causes neonatal death
due to severe musculoskeletal defects [88]. Interestingly,
mouse embryonic fibroblasts (MEFs) derived from Fst-defi-
cient embryos display a lack of stimulation of key markers of
energy metabolism and mitochondrial biogenesis (Bmp7,
Pparg, Pgc1a, Cidea, Cytc or Cd36) [120] suggesting its po-
tential role in the regulation of brown fat activity. In this re-
gard, follistatin enhances the acquisition of brown adipocyte
characteristics, by inducing the expression of key brown
adipose-associated markers (Pgc1a, Ucp1, Prdm16 and
Fabp4) as well as increasing cellular oxygen consumption
[13]. An important relationship between the muscle-derived

Rodríguez et al.



factor follistatin and irisin exists with the expression of skel-
etal muscle FNDC5 being positively regulated by follistatin
and negatively by MSTN.

Decorin

Decorin is a crucial component of the extracellular matrix and
a newly characterised contraction-induced myokine [68].
Decorin induces the upregulation of myogenic-associated fac-
tors such as MyoD and follistatin, and downregulates pro-
moters of muscle atrophy including atrogin-1/MAFBx and
MuRF-1. Mechanistically, secreted decorin binds and sup-
presses the activity of MSTN, suggesting a role in the muscle
hypertrophic response and hence, in the regulation of fat
browning [68].

Meteorin-like

Meteorin-like (METRNL) is a myokine induced in the skele-
tal muscle and WAT upon exercise and cold exposure, respec-
tively. Contrary to the PGC-1α-dependent FNDC5,
METRNL is primarily dependent on the PGC-1α isoform 4
(PGC-1α4) induced upon resistance exercise [110]. PGC-1α4
does not regulate most known PGC-1α targets including the
regulation of the mitochondrial and oxidative metabolism
programmes but induces muscle hypertrophy and strength
[119]. METRNL is acutely induced after a single bout of
high-intensity interval exercise in human skeletal muscle
[30]. METRNL increases whole-body energy expenditure
through the upregulation of genes involved in the brown/
beige fat thermogenic and mitochondrial programme (Ucp1,
Pgc1a,Dio2 and Erra) as well as the anti-inflammatory genes
Il10 and Tgfb in AT. This activation of fat browning is not the
consequence of a direct effect of METRNL on adipocytes but
utilises an unconventional mechanism. METRNL indirectly
activates the browning gene programme in WAT via stimulat-
ing the expression of the eosinophil-specific chemokines IL-4
and IL-13, promoting the activation of AT macrophages, es-
sential to induce the production of catecholamines and to ul-
timately activate a pro-thermogenic programme [110].

IL-6

IL-6 synthesis and release by contracting skeletal muscle in-
creases up to 100-fold after prolonged exercise, being consid-
ered the major myokine induced by exercise. Although IL-6
was originally classified as a pro-inflammatory cytokine, anti-
inflammatory properties have also been described [77]. In this
regard, IL-6 not only acts as a central mediator of inflamma-
tion but also serves as an endocrine modulator of metabolism,
increasing glucose uptake and fatty acid oxidation in skeletal
muscle while stimulating liver glucose output and fatty acid
release from AT [55, 150]. Ucp1 gene expression levels are

increased in murine inguinal WAT after exercise training but
not in Il6-deficient mice, suggesting that IL-6 plays a key role
in the regulation of UCP1 expression. In this context, daily
administration of IL-6 upregulates Ucp1 expression in subcu-
taneous WAT [75]. Noteworthy, IL-6 is also released from
differentiating human beige adipocytes facilitating the com-
mitment of adipocyte precursors towards beiging, indicating
its participation in fat browning [78].

Lactate

Lactate is the end product of anaerobic glycolysis and an im-
portant metabolite that mediates a large intercellular and inter-
organ metabolic interplay. Lactate is considered a myokine,
since it is a signalling molecule derived from muscle that
communicates with other tissues, particularly the brain, the
liver and the heart [83]. Lactate has also been reported to
strongly increase thermogenic gene expression (Ucp1,
Cidea, Fgf21 and Hoxc9) in mouse and human WAT, being
this effect dependent on the presence of active PPARγ signal-
ling [17]. Interestingly, lactate induces the expression and se-
cretion of FGF-21 from adipocytes [67] and myocytes [142],
with this hormone being an important inductor of fat brow-
ning. Intense exercise causes a ~ 20-fold increase in circulat-
ing lactate, and further studies are needed to directly link an
exercise-induced increase in lactate to the remodelling and
browning of subcutaneous WAT.

Succinate

The mitochondrial tricarboxylic acid cycle intermediate suc-
cinate, produced by muscle shivering during cold exposure or
exercise, is accumulated in a selective and substantial manner
in both brown and beige ATs. The increased succinate levels
are metabolised, triggering mitochondrial ROS production
and UCP1-dependent thermogenesis activation [92].

Adipokines and fat browning

AT functions as both an energy storage and a secretory tissue
producing a variety of bioactive substances, generally referred
as adipokines, involved in regulating physiologic and patho-
logic processes. AT comprises two fractions, mature adipo-
cytes and the stromovascular fraction that includes
preadipocytes, fibroblasts, vascular endothelial cells and a va-
riety of immune cells such as AT macrophages. AT also pro-
duces and secretes a wide spectrum of pro-inflammatory and
anti-inflammatory factors implicated as active participants in
energy homeostasis, including fat browning [58].

Two important adipokines, FGF21 and leptin, act in an
autocrine/paracrine manner regulating the browning process
induced by irisin.

Impact of adipokines and myokines on fat browning



Leptin

Leptin, the product of the ob gene, is a 16 kDa protein discov-
ered in 1994 crucial for whole-body metabolism, thanks to the
almost ubiquitous distribution of leptin receptors (LepR) in
peripheral tissues [38, 154]. Leptin is mainly produced in
adipocytes in relation to their triglyceride stores, representing
a hormonal signal that circulates in proportion to body fat
[37]. The lipolytic effect of leptin also helps to regulate adi-
pocyte size and volume [42, 44]. Leptin predominantly influ-
ences energy balance via its effects on food intake and energy
expenditure [43, 48]. Leptin crosses the blood-brain barrier
affecting hypothalamic neural circuitry involved in the regu-
lation of feeding behaviour and energy balance, including the
arcuate nucleus (ARC), ventromedial hypothalamus (VMN)
and dorsomedial hypothalamus (DMN) [61]. Leptin acts on
appetite-suppressing proopiomelanocortin (POMC) and
cocaine- and amphetamine-regulated transcript (CART) ex-
pressing neurons in order to suppress food intake and promote
energy expenditure [96]. Central leptin administration acti-
vates WAT differentiation towards a BAT-like phenotype
through the activation of the sympathetic nerve activity in
BAT [105]. In this line, key markers of brown fat cell mor-
phology and function are decreased in leptin-deficient ob/ob
mice, suggesting a crucial role of leptin in brown adipogenesis
and nonshivering thermogenesis. Furthermore, leptin and in-
sulin act synergistically on distinct POMC neuronal subsets
promoting WAT browning and energy expenditure as well as
preventing the development of diet-induced obesity [28].

Another important target for leptin actions is the skeletal
muscle, where it stimulates fatty acid oxidation via AMPK,
increases both basal- and insulin-stimulated glucose uptake
and oxidation and reduces inflammation and oxidative stress
in muscle fibres. Furthermore, leptin enhances muscle cell
proliferation and inhibits myofibrillar protein degradation by
reducing the expression of negative regulators of muscle
growth including myostatin, dystrophin or atrophy-related
atrogin-1/MAFbx or MuRF1 [122]. Interestingly, leptin in-
creases Fndc5 gene expression levels in skeletal muscle, and
stimulates irisin-induced muscle growth, as well as a prolifer-
ative response, suggesting that both molecules act synergisti-
cally on muscle accretion [145]. Contrary to what happens in
the skeletal muscle, leptin downregulates the transcript levels
of Fndc5 in subcutaneous WAT [58]. Furthermore, leptin re-
duces irisin-stimulated expression of the brown adipocyte
markers Ucp1 and Cidec, as well as UCP1-positive cells, sug-
gesting a negative regulation of subcutaneous fat browning
induced by irisin.

Fibroblast growth factor-21

Fibroblast growth factor-21 (FGF21) is a member of the
fibroblast growth factor super family, a large family of

proteins involved in cell proliferation, growth and differ-
entiation. FGF21 acts as a metabolic regulator, controlling
glucose and lipid homeostasis [71], and ketogenesis, as
well as energy expenditure and fat browning in both
WAT and BAT [35, 63]. Although FGF21 is mainly
expressed in liver, it is also secreted by the pancreas, the
brain, the skeletal muscle, WAT and BAT. FGF21 signals
to tissues primarily through the β-Klotho/FGFR1c recep-
tor complex. FGFR1c has a broad tissue distribution,
whereas β-Klotho is expressed in a limited number of
metabolic tissues [8], suggesting that the tissue-specific
effects of FGF21 are limited to those expressing β-
Klotho. In this regard, both WAT and BAT express high
levels of the critical coreceptor β-Klotho and are sensitive
to exogenous FGF21 stimulation [35]. Adipocyte-derived
FGF21 activates the thermogenic gene expression in BAT
as well as browning in WAT depots. These processes are
mediated by central (via sympathetic activation [29]) and
local (via induction of the PGC-1α protein [35]) mecha-
nisms. Notably, BAT is also an important source of
FGF21, acting in an autocrine/paracrine manner and in-
ducing the thermogenic programme of the brown adipo-
cytes in response to cold exposure and β-adrenergic stim-
ulation [23, 80]. Accordingly, Fgf21-knockout mice ex-
hibit an impaired ability to adapt to chronic cold expo-
sure, decreased thermogenic gene expression in BAT and
impaired adaptive fat browning [35]. Interestingly, obesity
is associated with increased circulating concentrations of
FGF21, which is worsened by the presence of type 2
diabetes, [36, 59] together with a downregulation of β-
Klotho in subcutaneous and visceral fat depots [36], sug-
gesting a reduced responsiveness to FGF21 in these
tissues.

Furthermore, FGF21 levels detected in skeletal muscle
are essentially comparable with those in fasted liver, indi-
cating that the skeletal muscle is also an important source
of FGF21 production, with its expression being regulated
by a PI3K/Akt signalling pathway. In this regard, stimu-
lators of Akt1 signalling in skeletal muscle, such as resis-
tance training exercise, may improve obesity-related met-
abolic disorders through production and secretion of
FGF21, with endocrine effects leading to increased brow-
ning of WAT [66, 70].

FGF-21 is part of the potent bidirectional cross-talk be-
tween the skeletal muscle and AT. In this sense, the exercise-
induced increase in irisin can stimulate the expression of
FGF21 in brown fat, resulting in an increased browning of
subcutaneousWAT in both human andmouse adipocytes [80].

Zinc-α2-glycoprotein

Zinc-α2-glycoprotein (ZAG) is a 43-kDa adipokine identified
as a lipid-mobilising factor that stimulates lipolysis and
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inhibits lipogenesis in adipocytes. In this line, the expression
and circulating levels of ZAG are inversely correlated to adi-
posity [6] being its expression decreased or lost in ATof obese
mice and patients [94]. Intraperitoneal injection of a ZAG
expression plasmid decreases body weight and adiposity and
stimulates fat browning in the subcutaneous fat depot [84].

ZAG stimulates lipolysis in adipocytes via activation ofβ3-
adrenoceptors (AR) and the cAMP pathway which, in turn,
activates PKA, increasing the adipocyte’s lipolytic rate [121].
Intriguingly, activation of β3-AR also stimulates thermogene-
sis in mature brown adipocytes, and chronic β3-AR activation
causes WAT browning [27]. Overexpression of ZAG in adi-
pocytes enhances the expression of brown fat–specific
markers (Ucp1, Prdm16 andCidea), mitochondrial biogenesis
genes (Pgc1a, Nrf1/2 and Tfa) and key lipid metabolism li-
pases [151]. In line with this observation, ZAGmRNA expres-
sion is positively correlated with the expression of several
genes involved in fat browning in the subcutaneous WAT of
overweight/obese patients [84].

Adiponectin

Adiponectin is one of the most abundant adipokines secreted
from adipocytes, and it is expressed almost exclusively in
WAT and BAT [125]. Adiponectin exerts anti-diabetic effects,
protecting against insulin resistance, and its expression is
downregulated during obesity [134]. Furthermore, it is well-
established that adiponectin plays a crucial role in regulating
immune responses such as inflammation [32]. In this regard,
adiponectin regulates macrophage proliferation and
polarisation, suppressing M1 macrophage activation and pro-
moting M2 macrophage proliferation. The anti-inflammatory
M2 macrophages have been proposed to be an important
source of norepinephrine, a hormone involved in browning
and thermogenesis in BAT [98]. The promotion of M2 mac-
rophage proliferation by adiponectin provides a novel mech-
anism triggering a cold-induced browning effect in subcuta-
neous AT [64]. However, the relevance ofM2macrophages as
source of norepinephrine is controversial [34, 120]. Fisher
et al. suggest that alternatively M2 macrophages do not syn-
thesise high amounts of catecholamines and hence are not
likely to have a direct role in thermogenesis, whereas Lutz
et al. conclude that the increased alternatively activated mac-
rophages concomitant with enhanced sympathetic tone in AT
promote the thermogenic programme [120]. Further research
is needed to understand the role of M2 macrophages in
thermogenesis.

Batokines

Brown and beige adipocytes also have a secretory role, which
contribute, in an autocrine/paracrine manner, to the control of

BAT expansion and activity as well as to the extent of brow-
ning of WAT [141]. Among these factors, prostaglandins are
identified to directly induce browning in WAT [53].
Endothelin-1, which is released by brown adipocytes, is re-
ported to repress the thermogenic activities of brown and
beige AT [74]. The enhanced IL-6 expression in BAT may
participate in the induction of browning of WAT in response
to a cold environment [16], while BAT FGF21 expression is
also capable of influencing systemic FGF21 levels, stimulat-
ing browning markers in WAT [23]. MSTN, believed to be
produced mainly by muscle, is also expressed in BAT, con-
tributing significantly to serum myostatin levels [120].
Overexpression of MSTN impairs BAT differentiation
in vitro, with preadipocytes from Mstn-deficient mice
exhibiting an increased propensity to differentiate into brown
adipocytes. Furthermore, brown fat cells secrete CXCL14 (C-
X-C motif chemokine ligand-14), leading to adaptive thermo-
genesis via M2 macrophage recruitment and enhancing BAT
activation as well as the browning of WAT [21] (Fig. 2).

Beige adipocytes also secrete factors that can influence the
function of fat cells or other organs. In this regard, the secreted
factor Slit2, a member of the family of Slit homologue pro-
teins, is released from beige adipose cells and promotes adi-
pose thermogenesis, augmenting energy expenditure and con-
tributing to browning of inguinal WAT [135].

Cross-talk between myokines and adipokines

Pedersen et al. [103] suggested that the well-established pro-
tective effects of exercise are regulated by the skeletal muscle
via the secretion of myokines, preventing the adverse effects
of pro-inflammatory adipokines and generating an important
metabolic dialogue between the skeletal muscle and AT. In
this line, evidence clearly demonstrates that skeletal muscle
and AT function as endocrine organs producing a variety of
factors, myokines and adipokines, respectively, involved in
the complex network of interorgan communication required
for energy homeostasis in a complex organism. This connec-
tion allows local autocrine/paracrine interactions, regulating
different physiological processes such as myogenesis, adipo-
genesis, protein turnover and lipogenesis/lipolysis [45]. The
high conservation of leptin among species points to the phys-
iological relevance of this adipokine [95]. Noteworthy, the
plausible role of other factors like caveolin-1, aquaporins or
serum amyloid A, among others, which are involved in the
development of the metabolic derangements should not be
disregarded [18, 39, 56]. In this regard, fat browning is medi-
ated by myokines, with their activity being modulated by
adipokines, confirming the potential cross-talk between AT
and skeletal muscle in order to control body weight, energy
expenditure and thermogenesis [117].

Impact of adipokines and myokines on fat browning



Conclusion

Since the discovery of leptin in 1994, there has been an intense
focus on the autocrine properties of AT. It has been demon-
strated that AT plays a key role in the regulation of energy
homeostasis, and alterations in the expression or activity of
adipokines have a fundamental role in the pathogenesis of
metabolic disorders. Nevertheless, contracting skeletal muscle
has emerged as an endocrine organ secreting numerous
myokines involved in the regulation of metabolism. Indeed,
somemolecules expressed in the skeletal muscle have recently
been shown to modulate adipose metabolism, especially
browning ofWAT, confirming the metabolic interrelationships
and cross-talk of signals derived from both organs.
Understanding the complexity of the cross-talk between skel-
etal muscle cells and adipocytes will allow to delineate the
molecular mechanisms involved in WAT browning as well
as to identify novel pharmacological agents, holding great
promise for protection against obesity and its related metabol-
ic diseases.
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