Revision surgery for one anastomosis gastric bypass with anti-reflux mechanism: A new surgical procedure using only not previously operated intestine

Article in Nutricion hospitalaria: organo oficial de la Sociedad Española de Nutrición Parenteral y Enteral - December 2014
DOI: 10.3305/nh.2014.30.6.8121

CITATIONS
2

READS
234

7 authors, including:

Alexander Reyes-Ortiz
Mexican Institute of Social Security
13 PUBLICATIONS 47 CITATIONS
SEE PROFILE

José Manuel Martinez Moreno
University of Malaga
48 PUBLICATIONS 177 CITATIONS
SEE PROFILE

All content following this page was uploaded by José Manuel Martinez Moreno on 12 April 2016.
The user has requested enhancement of the downloaded file.
Revision surgery for one anastomosis gastric bypass with anti-reflux mechanism: a new surgical procedure using only not previously operated intestine

Manuel García-Caballero¹, Alexander Reyes-Ortiz¹,²,³, Manuel Martínez-Moreno¹, Alfredo Mínguez-Mañanes¹, José Antonio Toval-Mata¹, Diego Osorio-Fernández¹ and José María Mata-Martín¹

Abstract

Introduction: Obesity is now an epidemic in industrialized countries with high prevalence (U.S. with 67%, Europa from 40% to 50%). This has led to the development of many bariatric procedures. Nevertheless, the primary surgery could fail due to several conditions. There is no standard re-operative procedure of revision for primary bariatric failure. Re-operate in the place of the primary surgery imply high rate of risks. We have developed a new procedure for revision surgery working only on not previously operated tissue.

Methods: We measure the common channel from gastro-jejunal anastomosis until the ileocecal valve. Depending on the measure, we decide the length of intestine to be excluded (biliopancreatic limb and common channel). We interrupt the afferent loop before gastro-jejunostomy and the efferent loop 20 cm below the gastro-jejunosomy. For restoring the gastro-intestinal transit, we anastomose the upper part of the afferent and efferent loop side-to-side and the efferent loop segment to the upper part of the new common channel.

Discussion: There is no standard procedure for revision of primary surgery. Even, the gold standard surgery Roux-en-Y gastric bypass is one of the most failed procedure (≤ 35%). We have developed the revision for One Anastomosis Gastric Bypass (BAGUA) working always in healthy tissue not previously used.

Conclusions: A few number of patients with tailored BAGUA for morbid obesity will require a surgical rescue procedure due to excess or insufficient weight loss or weight regain. This new procedure has been proven to be easy and safe, avoiding the surgical difficulties of the classical revision through the scar tissue.

Key words: One Anastomosis Gastric Bypass. Total length small intestinal. Revision surgery. Insufficient weight loss and Weight re-gain.

CIRUGÍA DE REVISIÓN DE BYPASS GÁSTRICO DE UNA ANASTOMOSIS CON MECANISMO ANTI-REFLUJO: UN NUEVO PROCEDIMIENTO QUIRÚRGICO UTILIZANDO SOLO INTESTINO NO OPERADO ANTERIORMENTE

Resumen

Introducción: La obesidad es ahora una epidemia en los países industrializados con una alta prevalencia (Estados Unidos con el 67%, Europa desde el 40% al 50%). Esto ha llevado al desarrollo de muchos de los procedimientos bariátricos. Sin embargo, la cirugía primaria puede fallar debido a diversas condiciones. No existe un procedimiento quirúrgico estándar para realizar revisión para la cirugía bariátrica que ha fallado. Re-operar en el lugar de la cirugía primaria implicar una alta tasa de riesgos. Nosotros hemos desarrollado un nuevo procedimiento para la cirugía de revisión trabajando únicamente en el tejido no operado previamente.

Métodos: Nosotros medimos el canal común desde de la anastomosis gastro-yeyunal hasta la válvula ileocecal. Dependiendo de la medición, decidimos la longitud del intestino para ser excluido (asa biliopancreática y canal común). Interrumpimos el asa aferente antes gastro-yeyunostomía y el asa eferente a 20 cm por debajo de la gastro-yeyunostomía. Para restaurar el tránsito gastro-intestinal, anastomosamos la parte superior del asa eferente y eferente en forma latero-lateral, y el segmento del asa eferente a la parte superior del nuevo canal común.

Discusión: No existe un procedimiento estándar para la revisión de la cirugía primaria. Incluso, la cirugía Gold standard el bypass gástrico Roux-en-Y, es uno de los procedimientos con más fracasos (≤ 35%). Hemos desarrollado la revisión del Bypass Gástrico de Una Anastomosis (BAGUA) trabajando siempre en tejido sano no utilizado previamente.

Conclusiones: Un escaso número de pacientes con BA-GUA a medida para obesidad mórbida requerirá un procedimiento de rescate quirúrgico debido a exceso de peso o pérdida de peso insuficiente, o la re-ganancia del peso. Este nuevo procedimiento ha demostrado ser fácil y seguro, evitando las dificultades quirúrgicas de la revisión clásica a través del tejido cicatrizado.

Palabras claves: Bypass Gástrico de una anastomosis. Longitud total del intestino delgado. Cirugía de revisión. Insuficiente pérdida de peso y Re-ganancia de peso.
Introduction

Obesity is now epidemic in industrialized countries. The prevalence of obesity is high in countries such as the U.S. where 67% of the population is overweight or obese. Prevalence in European countries ranges from 40% to 50%1. This high prevalence of morbid obesity worldwide has resulted in the development of many bariatric surgical procedures, which have proven to be more effective for sustained long-term weight loss that nonsurgical treatment. Nevertheless, since the early 1980s, it is known that some patients may require a second surgery due to inadequate weight loss or weight re-gain2, excess weight loss3 or other reasons.

The great amount of bariatric primary surgeries for treating obesity, has led to an increasing number of reoperations for failed bariatric procedures. The reasons and types of these operations are varied in nature4. It has been demonstrated that weight regain could be due to lack of control over food intake that can produce addictive behaviors to some kind of food, lack of self-monitoring or fewer postoperative follow-up visits5,6.

Revision of bariatric surgery is a complex and growing surgical field4. There is no standard re-operative procedure for the failure of primary bariatric surgery7. The vast majority of bariatric surgeons perform corrective surgery based on their own experience2,7,8. Reoperations imply work on scar tissues, with strong adherences, without defined dissection plane, highly vascularized and, hence, of higher risk than primary surgery. In spite of that, the expected weight loss results are lower than in primary surgery although is a good solution for the comorbidities9,10,11.

So, reoperations involve a complex decision process that includes assessing the current state of the cases that has failed and make the identification of a safe alternative2,12. Bariatric surgeons must analyze the indication of revision surgery on a case-by-case basis, and choosing an easy and safe revision procedure2,13. Many revision surgical alternatives has been described. Most of them imply undo the primary surgery and make it back to. Another alternative is the use of rings or bands for inducing restriction of food intake. Nevertheless, both alternatives need to be performed on scar tissue. An ideal solution will be to have the opportunity of performing revision surgery on healthy tissue as we do in primary surgery. That is the alternative we have found and use for revision in One Anastomosis Gastric Bypass (BAGUA).

Methods

Preoperative management

In all selected patients to re-operate, a preoperative study was conducted following the indications of the Clinical Practice Guideline (CPG) of the European Association for Endoscopic Surgery (EAES)14.

Before surgery, all patients eat only liquid diet depending of preoperative BMI during 5 (BMI <34) to 7 days (BMI >35), received antibiotic and antithrombotic prophylaxis.

Detailed description of the new surgical technique

In surgery, the surgeon stands between the patient’s legs. The procedure begins introducing a Veress needle at the left subcostal space in order to create the pneumo-peritoneum. We use four trocars introduced in the same points as in primary surgery (Tailored One Anastomosis Gastric Bypass) but approximately 10 cm down (see figure 1). We put the first trocar of 10 mm in the middle line of the abdomen for the camera. The second trocar of 12 mm is positioned around 10 cm to the right side of the first trocar from the position of the surgeon. The third trocar of 12 mm is placed around 10 cm to the left side of the first one trocar at the same level. The fourth trocar of 5 mm is put with internal vision control with the camera, in the left flank at the lower edge of the subcostal border, and it is used to separate the stomach and visceral fat, and others operation maneuvers with the intestinal loop. It is not necessary to retract the liver because we work below the gastrojejunal anastomosis.

Fig. 1.—Trocar site in primary (upper lines: 10 mm in centre and 12 mm at both side) and revision surgery (lower lines). The 5 mm trocar in the left subcostal space is the same in both cases.
We start the surgical procedure measuring the length of the common channel from gastro-jejunal anastomosis to the ileocecal valve. Depending on it, we decide the length of intestine to be excluded. As can be seen in figure 2, if we found a total small intestine length of 6 m and a biliopancreatic limb of 2 m with 4 m of common channel from the primary surgery, we excluded another 2 m. Then, after the revision surgery, the patient will have 4 m of intestine excluded (new biliopancreatic limb length) and only 2 m of common channel. Six meters is the more frequent total small intestine length in human beings. The proportion between excluded intestine and common channel described above is based in the large experience when we used a standard procedure that excluded 2 m small intestine distal to the Treitz ligament for all patients. In case we measure a total small intestine length shorten or longer than 6 m, we calculate the length of excluded intestine and common channel proportionally to what we do when the total small intestine length is 6 m.

Once decided the new measures of biliopancreatic limb and common channel, we proceed interrupting the continuity of the afferent loop just before gastro-jejunostomy and the efferent loop 20 cm below the gastro-jejunostomy using a 45 mm stapler blue cartridge in order to restore the intestinal transit (Fig. 2B). Finally, we performed a second side-to-side anastomosis between the 20 cm of the efferent loop segment after primary gastro-jejunal anastomosis, and the upper part of the new common channel (Fig. 2B).

Postoperative management

After surgery, pain management is initiated. Patients begin ambulating few hours after the surgery. Twenty-four hours after the operation, we perform an upper gastrointestinal radiological contrast study with oral Gastrografin® with the patient standing up and lying on his left side to verify that the jejunum-jejunum anastomosis is not leaking. Once we have verified that there is no leaking, the drain is removed. Then the patient begin eating a clear liquid diet. The patient is discharged from the hospital 48 hr after surgery with oral tolerance. They drink liquid diet in the 1st week, semifluids in 2nd week, purée in 3-4th weeks and normal diet after one month of surgery. The patients were reviewed at 10 days, 1, 3, 6 and 12 months.

Discussion

Morbid obesity is an epidemic disease for which, at present, bariatric surgery is the only effective treatment. Despite its success, some patients required reoperation due to failure of the surgery15. According to Larsen et al16, failure in bariatric surgery for lack of weight loss, can produce a low quality of life and mental health affectation that may play a role in the decision for reoperation.

Even, the gold standard surgery Roux-en-Y gastric bypass (RYGB) to treat morbid obesity is one of the most failed procedure due to the large diffusion worldwide17. Rawlins et al18 in their revision mentioned that weight loss failure after proximal Roux-en-Y gastric bypass occurs in ≤ 35% of cases. However, the management of selected patients who fail to lose adequate weight or regain weight after primary bariatric surgery different to Roux-en-Y gastric bypass, can be repaired with RYGB19, but morbidity is three to fivefold higher than after primary RYGB20.

Bariatric surgery includes a large number of surgical procedures, some of which have become extinct and others continue performing. However, there is no clear procedure for the failure of a specific process, because reoperation is performed according to the characteristics of each patient and the experience of each surgeon.
Hence, in revision Bariatric surgery are some important debates to be resolved. First, those patients do not lose as much weight as primary surgery. Second, it could cause more complications, reoperations and use of ICU. Third, there are no established guidelines or procedures of revision surgery based on the evidence. Finally, there are factors that directly depend of the personal commitment and compliance of the patient that will be lifelong2,4.

The first consideration for the surgeon is the right choice of the primary surgery using criteria like that better weight loss and maintenance to prevent recurrence, and to be the easiest surgery to be revised if necessary. In our opinion, tailored BAGUA is the best choice for both losing and maintaining weight23 or for revision surgery in case of insufficient weight loss or weight regain as well as excess weight loss.

Revision seems to be easy in Omega Loop GB (what we call BAGUA) when do not add an anti-reflux mechanism. However, when an anti-reflux mechanism is added, we put together the gastric pouch and the jejunum in approximately 12 cm, and to separate both structures is not so easy.

We found that separate the gastro-jejunal anastomosis is difficult. So that we have developed the procedure described in this paper, which allow us to review the tailored One Anastomosis Gastric Bypass (BAGUA), working always in healthy tissue not previously used as happened in primary surgery (Fig. 1A).

We add an anti-reflux mechanism to the Omega loop gastric bypass putting together the gastric pouch and the intestine in approximately 12 cm from the gastro-jejunostomy. This maneuver not only minimize the contact of the bilio-pancreatic secretion with the gastric mucosa and delay the gastric empty adding restriction, but also protect gastric pouch against dilatation as we have observed in some cases revised. That means that there is no necessity for reviewing gastric pouch as has been described by other authors after performing RYGBl,27. Hence, we need only to add more malabsorption because the restriction is maintained.

Therefore, we need to increase the length of the bilio-pancreatic limb and, consequently, shortens the common channel. Until now, always has been performed by separating the gastro-jejunal anastomosis with stapler which include a difficult dissection for separating the liver normally adhered to the anastomosis and the gastric pouch from the surrounding structures behind the anastomosis (of approximately 12 cm in our case).

The procedure we have developed consisting only in performing two latero-lateral jejuno-jejunal anastomosis using small intestine do not touched previously which is quick and safe. The whole procedure is carried out using only stapler (for the anastomosis and for closing the holes made for introducing the stapling device).

The aim of our rescue procedure was designed not only to achieve further weight reduction in patients with unsuccessful weight loss after primary one anastomosis gastric bypass surgery, but also to treat complications such as excess weight lost. This is of paramount importance in patients with a BMI not healthy after primary surgery to whom require a rescue procedure since obesity-associated comorbidities are still present or concerns about excessive weight loss.

Our data support the idea that a failed surgical procedure, such as gastric bypass, should be corrected by another procedure purely malabsorptive procedure as the new technique mentioned in this paper. Nevertheless, to avoid the failure of the primary surgery, it is necessary to measure completely the length of the small intestine to exclude the correct length, as we do routinely after these experiences.

Conclusions

A few number of patients with laparoscopic tailored One Anastomosis Gastric Bypass for morbid obesity will require a surgical rescue procedure due to excess or insufficient weight loss or weight regain.

We show how with only performing a double latero-lateral jeuno-jejunal anastomosis in healthy intestine not previously used, the patient can lose the necessary weight with a risk even lower than primary surgery, which is exceptional in revision surgery.

References

