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Abstract In light of the rapid increase in the number of obesity incidences worldwide, obesity has become an
independent risk factor for chronic kidney disease. Obesity-related glomerulopathy (ORG) is characterized by
glomerulomegaly in the presence or absence of focal and segmental glomerulosclerosis lesions. IgM and
complement 3 (C3) nonspecifically deposit in lesions without immune-complex-type deposits during ORG
immunofluorescence. ORG-associated glomerulomegaly and focal and segmental glomerulosclerosis can
superimpose on other renal pathologies. The mechanisms under ORG are complex, especially hemodynamic
changes, inflammation, oxidative stress, apoptosis, and reduced functioning nephrons. These mechanisms
synergize with obesity to induce end-stage renal disease. A slow increase of subnephrotic proteinuria ( < 3.5 g/d) is
the most common clinical manifestation of ORG. Several treatment methods for ORG have been developed. Of
these methods, renin–angiotensin–aldosterone system blockade and weight loss are proven effective. Targeting
mitochondria may offer a novel strategy for ORG therapy. Nevertheless, more research is needed to further
understand ORG.
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Introduction

The obesity epidemic has led to an increase in the number
of incidences of obesity-related glomerulopathy (ORG),
which is pathologically defined as the occurrence of
glomerulomegaly and focal and segmental glomerulo-
sclerosis (FSGS) in patients with BMI of ≥ 30 kg/m2.
ORG has become a global issue, and its prevalence has
increased substantially [1]. A clinicopathological study of
native renal biopsies showed that a progressive increase in
incidence of biopsy proved ORG from 0.2% in 1986–1990
to 2.0% in 1996–2000 (P = 0.0001) and further to 2.7% in
2001–2015 [2,3]. This worldwide obesity epidemic has
brought immense medical concern. Obesity is an important
and independent risk factor for chronic kidney disease
(CKD). The mechanisms involved in ORG are compli-
cated and integrated, especially hemodynamic changes,
inflammation, oxidative stress, and apoptosis. Nephrotic
proteinuria ( > 3.5 g/d) is occasionally present, but typical
nephrotic syndrome is characteristically absent. Further-

more, about 30% of ORG patients develop progressive
renal failure or end-stage renal disease (ESRD). Hyperten-
sion and dyslipidaemia are also commonly observed in
ORG patients. In this article, we review the clinical and
pathological characteristics, pathogenesis, and treatment of
ORG.

Pathology characters of ORG

ORG is characterized by glomerulomegaly in the presence
or absence of FSGS lesions (Fig. 1) [2,4,5]. Glomerulo-
megaly is identified through measuring the diameters of all
glomerulus samples or those sectioned through the hilus,
which is in the central part of the glomerular globe [3]. In
other methods, the serial sections of an individual
glomerulus are used to estimate glomerular volume [6].
In a Columbian study, the glomerular diameter in ORG
(mean 226 mm) significantly increased to a greater extent in
comparison with those in age- and sex-matched normal
controls (mean 168 mm; P < 0.001) [2]. Glomerulomegaly
is accompanied by mesangial proliferation, matrix accu-
mulation, and hypertrophied podocytes with milder foot
process fusion [7].
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FSGS is defined as a segmental consolidation of the
glomerular tuft by extracellular matrix and/or hyaline,
resulting in capillary obliteration [4]. FSGS lesions
are predominantly perihilar and typically observed in
hypertrophied glomeruli [8]. Perihilar lesions might also
contain other glomerular globe parts. Exclusively perihilar
lesions are observed in 19% of ORG biopsy samples,
and a mixture of perihilar and peripheral lesions in 81%
[2]. This observation indicates that the ultrafiltration
pressure at the afferent end of the glomerular capillary
bed is greater than that at the efferent end, and this
difference in ultrafiltration pressure leads to afferent
arteriole reflex dilation [9]. In contrast to primary FSGS,
which shows diffuse effacement, ORG-related FSGS
presents an irregular mild foot process effacement under
an electron microscope. Furthermore, the experimental
models of ORG showed that glomerular tuft volume
increases exponentially in relation to body weight gain in
wild-type Fischer intact rats kept on an ad libitum diet [10].
The numerical density of podocyte decreases as the renal
mass and glomerular diameter increase, thereby inducing
the extension of podocytic processes and covering the
expanded area. This expansion can cause podocyte
detachment, which induces loss in protein selectivity and
formation of denuded areas. The loss of protein selectivity
and presence of denuded areas trigger matrix deposition
and inflict podocyte injury, finally causing glomerulo-
sclerosis [11,12].
In addition, lipids are deposited in mesangial cells,

podocytes, and proximal tubular epithelial cells [13]. The
loaded lipids in the mesangial cells induce structural
damage and function loss. Lipid deposition in podocytes
leads to insulin resistance and apoptosis, while accumula-
tion of nonesterified fatty acid (NEFA)-bound albumin
causes atrophy and interstitial fibrosis in tubular cells [14].
“Diabetoid” changes (focal mesangial sclerosis, focal
thickening of glomerular and tubular basement mem-

branes) in glomeruli are frequently observed in obese
patients without diabetes [2,4], indicating shared molecular
pathways in diabetic glomerulosclerosis and ORG [15]. In
ORG-related FSGS, tubular atrophy and interstitial fibrosis
are typically mild (mean 1.26+) similar to interstitial
inflammation (mean 0.8+). Arteriolosclerosis ranges from
mild to moderate (mean 1.42+) [2] and is generally milder
than primary FSGS.
In ORG biopsy samples, nonspecific deposition of IgM

and C3 in the lesions of sclerosis and hyalinosis can be
detected through immunofluorescence. No other immune-
complex-type deposit is present. ORG can also super-
impose on other renal diseases, such as IgA nephropathy
[16].
Clinically significant obesity is the leading cause of

ORG. However, many studies confirmed that mild renal
pathological alterations are observed in a large number of
patients with morbid obesity but without clinical evidence
of renal disease [17]. Thus, future research must focus on
determining whether renal biopsies must be considered in
patients with mild obesity for the detection of any presence
of subclinical renal injury similar to that observed in
extremely obese patients.

Mechanisms of ORG

The mechanisms involved in ORG are complex. Adipose
tissue is unbalanced in terms of lipid accumulation in renal
cells, and the effects of obesity-associated diseases, such as
hypertension, diabetes, dyslipidemia, insulin resistance,
and obstructive sleep apnea (OSA), contribute to ORG
occurrence. ORG primarily contributes to renal injury
through multiple effectors, adipokines, lipids, renin-
angiotensin-aldosterone system (RAAS), sympathetic
nervous system (SNS), inflammation, oxidative stress,
and apoptosis (Fig.2) [18].

Fig. 1 Glomeruli of patients with ORG. Glomerulomegaly is present, and increased capillaries number is observed. Capsular space is
restricted, and segmental sclerosis sites are located near the vascular pole (magnification 200� ).
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Renal hemodynamic changes

The most important pathogenesis of ORG is glomerular
hyperfiltration, hypertension, and hyperperfusion. The
hemodynamics of kidneys is indirectly measured by
glomerular filtration rate (GFR), renal plasma flow
(RPF), and filtration fraction (FF). In 1974, Weisinger
et al. [19] proposed that the cause of reversible proteinuria
in obese patients is renal venous hypertension. Since then,
the role of hyperfiltration in glomerular injury has attracted
increasing attention. Glomerular hypertension promotes
capillary wall stress and leads to basement membrane
expansion, glomerulomegaly, and hyperfiltration [20].
Chagnac et al. [9] found that the GFR and RPF in the
obese group exceeded those of the control by 51% and
31%, respectively. A cross-sectional study of 301
nondiabetic participants also confirmed that obesity is

associated with increased GFR, effective renal plasma flow
(ERPF), and FF values by comparing lean, overweight,
and obese patients with respect to GFR (99, 110, and 117
mL/min, respectively, P < 0.001), ERPF (424, 462, and
477 mL/min, respectively, P < 0.01), and FF (0.23, 0.24,
and 0.25, respectively, P < 0.001) [21]. Furthermore,
overweight individuals have higher GFR, RPF, and FF
values than lean individuals. Meanwhile, several studies
showed that renal hemodynamic changes appear at an early
stage of adiposity. FF was found to be associated with
waist circumference and waist-to-hip ratio apart from BMI.
Some studies showed that losing weight, dietary salt
restriction, and RAAS blockade can recover increased FF
[22]. Chagnac et al. [22] demonstrated that ORG
hyperfiltration is reversible following weight loss. Notably,
improvement in hyperfiltration may prevent the develop-
ment of overt ORG.

Fig. 2 Ang II, renal sympathetic nervous system, and insulin can cause proximal tubular salt reabsorption that increases glomerular
pressure, and efferent arteriole constriction has the same effect. Increase of glomerular pressure leads to the increase of filtrate flow,
intensified wall tension, and hypertrophy and apoptosis of podocytes, finally resulting in obesity-related glomerulopathy. Leptin and
insulin resistance can promote TGF-β and TGF-β receptor II activities that aggravate podocyte apoptosis. Increase of mitochondrial ROS
limits mitochondrial β-oxidation and causes cellular lipid accumulation, which causes a further rise of mitochondrial ROS in return. Lipids
can damage mitochondria and decrease AMPK activities, resulting in podocyte apoptosis. Furthermore, adiponectin deficiency can
decrease AMPK activity. Ang II, angiotensin II; RSNS, renal sympathetic nervous system; TGF-β, transforming growth factor β; TGF-βR,
TGF-β receptor; AT1R, type 1 angiotensin II receptor; AMPK, AMP kinase.
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In obese patients, renal vasodilation and RPF increase in
the afferent arteriole. Elevation in their GFRs is mainly
attributed to increased transcapillary hydraulic pressure
difference [9]. Meanwhile, systemic hypertension is
extremely common in adiposis, and some studies con-
firmed its important role in the pathogenesis of renal
hyperfiltration.
Hemodynamic changes lead to increases in filtered

sodium load accompanied with hyperfiltration in adiposis.
Tubular sodium resorption also increases to prevent
volume depletion, which may contribute to renal damage
and accelerate GFR decline. Reabsorbing glucose and
sodium via tubular SGLT2 and SGLT1 results in decreased
sodium load to macula densa and distal tubule. This
decrease stimulates tubuloglomerular feedback, which
induces preglomerular vasodilation and increases GFR,
resulting in tubular origin hyperfiltration [23]. Recent
studies showed that SLGT2 inhibitors lower the GFR of
diabetic patients and have an important protective role in
renal hyperfiltration [23,24]. Zingerman et al. [25] found
that the carboanhydrase inhibitor, acetazolamide, can
decrease GFR by 21% in nondiabetic and severely obese
patients.

Renin-angiotensin-aldosterone system

Both kidney and adipose tissue contains the major
components of RAAS. Adipose tissue products, such as
angiotensinogen, increase RAAS activation. Increased
levels of angiotensin II and aldosterone more specifically
constrict efferent arterioles than afferent arterioles and
further raise transcapillary hydraulic pressure difference
and GFR. Angiotensin II promotes the production of
transforming growth factor-β (TGF-β) and leads to renal
fibrosis and podocyte apoptosis [18]. However, some
research showed that aldosterone can increase human GFR
and promote endothelial dysfunction, inflammation, and
fibrosis [26,27]. In obesity cases, RAAS is overactivated
and thus may act as an effect factor for renal hyperfiltra-
tion.
RAAS overactivation can cause excessive sodium

reabsorption, resulting in renal hypertension and hyperfil-
tration. Angiotensin II stimulates luminal Na+-H+ exchan-
ger and basolateral Na+-K+-ATPase, thereby increasing
sodium reabsorption by the proximal tubule. Angiotensin
II also activates epithelial Na+ channels (ENaCs), thereby
enabling the distal tubule to increase its sodium reabsorp-
tion. It can also directly activate mineralocorticoid
receptors and thus promotes sodium reabsorption and
results in positive sodium balance [28].

Insulin resistance

Insulin resistance results in renal hemodynamic changes,

especially glomerular hyperfiltration, hypertension, and
excessive sodium reabsorption. Hyperinsulinaemia, which
is secondary to insulin resistance, increases salt retention.
Its mechanism might be excessive sodium reabsorption in
the distal tubule through ENaC activation. Insulin
resistance causes renal damage, including endothelial
dysfunction, increased vascular permeability, protein
traffic, mesangial hyperplasia, renal hypertrophy, and
enhanced endothelial cell proliferation [29,30]. Some
studies showed that insulin activities in podocytes play
an essential part in glomerular function and morphology,
cytoskeleton remodelling, and survival [29]. Insulin
resistance also causes metabolic syndrome, hyperinsuli-
naemia, adipocytokine dysregulation, and low-grade
inflammation [31,32].

Mitochondrial dysfunction

Szeto et al. [33] demonstrated mitochondrial dysfunction
is the main cause of renal pathology induced by high-fat
diet (HFD). Given that the kidney is an organ that demands
continuous high-energy provision, mostly from mitochon-
drial fatty acid β-oxidation (FAO), lipid overload and
impaired FAO lead to a disturbance in fatty acid uptake and
utilization, further aggravating lipid accumulation in
kidney cells and tissue [34]. Renal lipid deposition and
downregulated FAO are often present in both obese mice
and humans [35]. In previous research, reduction of AMP-
activated protein kinase (AMPK) activity was demon-
strated to be a downstream consequence of mitochondrial
dysfunction [34]. Adiponectin-AMPK pathway down-
regulates both inflammation and profibrotic pathways in
both ORG and diabetic kidney disease [36,37]. AMPK
regulates not noly NFkB activation but also NADPH
oxidases [36]. AMPK activation can decrease mesangial
matrix expansion and lower the levels of profibrotic and
proinflammatory markers, such as TGF-β1, tumor necrosis
factor-α (TNF-α), and monocyte chemoattracting protein
(MCP) -1 [37,38]. Mitochondrial dysfunction generates
reactive oxygen species (ROS), which limit mitochondrial
β-oxidation and cause cellular lipid accumulation, which
results in further increase in mitochondrial ROS levels.
Lipids can damage mitochondria and decrease AMPK
activity and thus can promote podocyte apoptosis and
damage.

Inflammation

Adipose cells release a series of adipokines, such as TNF-
α, leptin, adiponectin, interleukins (IL)-6, IL-10, MCP-1,
plasminogen activator inhibitor (PAI) -1, resistin, and CRP,
and promote chronic low-grade inflammation in obese
patients. These lipid-mediated inflammations lead to renal
structural and functional changes in obesity cases [39].
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Chronic adipose inflammation, which forms from the
imbalance between proinflammatory and anti-inflamma-
tory factors, is a major factor for ORG [40].
Obese individuals have high levels of leptin, which

binds to specific receptors in mesangial cells. Leptin
upregulates TGF-β and TGF-β receptor II, thus inducing
an increment of type I and type IV collagen fibers in the
mesangium and promoting the formation of fibrosis.
Leptin binds to obRb receptors in the hypothalamus and
overactivates SNS, which induces renal hemodynamic
changes and renal damage [41,42].
Obese individuals have low concentrations of adipo-

nectin. As an anti-inflammatory and insulin-sensitizing
factor, adiponectin activates AMPKs to protect podocyte
functions and structures by reducing podocyte perme-
ability [43]. Resistin, a proinflammatory factor produced
by the monocytemacrophage cells, enhances insulin
resistance. The level of resistin reflects the levels of
inflammatory factors participating in ORG. Resistin
concentration also rises in patients with low GFR.
Furthermore, fetuin-A level is elevated in obesity,
especially in obesity-related disorders, such as metabolic
syndrome, diabetes, and nonalcoholic fatty liver disease.
Fetuin-A is associated with increased insulin resistance,
inflammation, and fibrosis in the liver and kidney. Fetuin-A
also suppresses adiponectin transcription in adipocytes and
participates in ORG.

Abnormal lipid metabolism

Abnormal lipid metabolism majorly includes perivascular
fat deposits, intracellular lipid load, and fat deposition in
the mitochondria. Perivascular fat can regulate blood flow
in arteries, and its accumulation is related to exercise-
induced albuminuria. Excessive lipid loads cause structural
damage and result in capillary loop dysfunction in
mesangial cells. Lipid loading produces metabolic
abnormalities in insulin and apoptosis in podocytes. Lipids
can damage mitochondria and decrease AMPK activity,
thereby resulting in podocyte apoptosis. Furthermore, lipid
accumulation increases mitochondrial ROS, which causes
further amassing of lipids in return.

Others

OSA activates renal SNS and induces sodium retention and
hypertension [44]. Renal hemodynamic changes further
aggravate ORG. Some studies suggested that a certain
extent of protein intake is importantly involved in
glomerular hyperfiltration [45].
Innate or acquired glomerular density reduction may be

an ORG risk factor. Epidemiological studies showed that
CKD risk is significantly high in subjects with low birth
weight owing to inadequate intrauterine development.

Obese individuals usually have reduced glomerular
densities and then are associated with hyperfiltration.
Tsuboi demonstrated that patients with biopsy-proven
ORG have significantly lower glomerular density than
control patients [46].

Clinical manifestation of ORG

The most characteristic and common clinical presentation
of ORG is proteinuria with normal urinary sediment, which
may or may not be accompanied by renal dysfunction
[2,47,48]. In most cases, subnephrotic proteinuria ( < 3.5
g/d) is prevalent [48,49]. Some studies reported that about
30% of ORG patients can reach nephrotic range protei-
nuria but with the characteristic absence of edema,
hypoalbuminemia, and typical disproportionate hyperlipi-
demia of nephrotic syndrome [2,46]. Even in massive
proteinuria cases ( > 20 g/d), the presence of full
nephrotic syndrome is exceptional. The reasons that
ORG patients do not develop typical nephrotic syndrome
are currently unclear, although may be accounted by the
following reasons. First, the slow progression of protei-
nuria might allow the development of compensation for
hepatic metabolism. Second, mechanisms of tubular
degradation and reabsorption of filtered proteins in
nephropathies caused by ORG may be different from
those in other glomerular diseases that cause full nephrotic
syndrome [2,8,50‒52].
Progressive increase in proteinuria without full nephro-

tic syndrome can be undetectable for years until late
clinical presentation. This characteristic of ORG greatly
facilitates the discrimination of ORG from primary FSGS
in a full nephrotic syndrome [2,47,51,53]. Table 1
summarizes the main distinctive clinical and histological
characteristics of obesity-associated FSGS and primary
FSGS.
Several cohort studies showed that obesity is associated

with high CKD incidence and increased ESRD risk. The
clinical process is indolently evolving, stable, or slowly
progressive proteinuria, and 10%–33% of the patients
possibly develop progressive renal dysfunction and ESRD.
The percentage increases at prolonged follow-ups
[2,47,49]. Comparative studies showed that primary
FSGS has a more sudden and aggressive disease process
than ORG and more easily develops to ESRD [2,47]. Other
common clinical manifestations of ORG include hyperten-
sion (50%–75% of patients) and dyslipidaemia (70%–80%
of patients) [2,47‒49].

Treatment strategy of ORG

Various kidney pathology superimposed on ORG is
present in patients with obesity. Kidney biopsy assists in
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performing appropriate management and prognosis [54].
Weight loss and RAAS blockade are the two efficient
treatments of ORG. The final aim is to slow down eGFR
decline in order to delay ESRD progression.

Weight loss

Weight loss, either by diet or bariatric surgery, reduces the
incidence of UAE or proteinuria [2, 47, 55]. That is, weight
loss are in a positive correlation with the reduction of
incidence of UAE or proteinuria.
Many studies, including nonrandomized prospective

studies, randomized controlled trials (RCTs), systematic
reviews, and meta-analyses, confirmed the relationship
between low-calorie diets and proteinuria reduction [56‒
58]. Hypertension, metabolic syndrome, diabetes, dyslipi-
daemia, and salt intake should be controlled at the same
time with low-calorie diet.
Weight loss by bariatric surgery is generally much more

effective than low-calorie diets [59]. Some clinical reports
showed dramatic proteinuria reduction in ORG patients
after bariatric surgery. Patients, who underwent bariatric
surgeries, including Roux-en-Y gastric bypass, adjustable
gastric banding, sleeve gastrectomy, had more severe
obesity than dietary intervention patients. In a study,
92 morbidly obese (MO) patients showed that patients with
normal renal functions and mild ORG lesions in presurgery
period exhibit short- and long-term maintenance of normal
renal functions and improvement in both renal arterial
hypertension and albuminuria after drastic weight loss after
bariatric surgery [60]. Recently, some uncontrolled
research indicated that bariatric surgery is beneficial to
ORG [61‒65]. However, these studies included patients
with normal renal functions and minimal albuminuria.
For MO patients with CKD, some studies considered that
the rate of perisurgical complications is significantly
high [66]. Thus, prospective controlled studies in ORG
patients with CKD or nephrotic proteinuria are necessary

to the evaluation of the efficacy and safety of bariatric
surgery [8].
Although some studies showed that weight loss is

beneficial to GFR progress [58], these studies often had a
short follow-up periods and used a small sample size. The
antiproteinuric effect of protection on renal function should
be confirmed through large prospective RCTs.

RAAS blockade

The role of RAAS makes it an important target for ORG
treatment. RAAS blockade, including angiotensin-con-
verting enzyme inhibitors (ACEI) and angiotensin receptor
blockers (ARB), has a significant antiproteinuric effect on
ORG patients. Antialdosteronic agents can also decrease
proteinuria in obese patients. In retrospective studies, using
ACEI or ARB for the treatment obese patients with
proteinuria or biopsy-proven ORG obviously decreases
proteinuria to 30%–80% of the baseline [2,47,49].
Mallamaci et al. [67] confirmed that the antiproteinuric
effect of ramipril in obese and overweight patients is more
increasingly prominent than those in patients with normal
BMI, and that ramipril reduces ESRD incidents. Obese
patients are more sensible to antiproteinuric and renopro-
tective effects of ramipril than nonobese patients.
A prospective RCT compared the effects of weight loss

(low-calorie diet or orlistat treatment) with RAAS
blockade in obese patients with proteinuria. The anti-
proteinuric effects of the two groups are similar [68]. Some
studies with long follow-up periods suggested that the
reduction of proteinuria through RAAS blockers can be
exhausted over time, particularly during further weight
gain or absence of weight loss [47,49].

Others

Insulin resistance plays an important role in ORG
pathogenesis. Some studies reported that insulin-

Table 1 Differences between obesity-associated FSGS and primary FSGS
ORG-related FSGS Primary FSGS

Appearance of proteinuria Slowly progressive proteinuria Proteinuria appears suddenly

Type of the proteinuria Most with sub-nephrotic proteinuria Most with nephrotic-range proteinuria

Occurrence of nephrotic syndrome Absence of nephrotic syndrome (edema,
hypoalbuminemia)

Most patients with full nephrotic syndrome

Progression Slower progression Faster progression

Variant Perihilar variant more common No special type, tip and collapsing variants
more common

Glomerular volume Glomerulomegaly Normal glomerular volume

Effacement of foot processes in electron
microscopy

Irregular effacement of foot processes Diffuse effacement of foot processes

Serum albumin levels Normal serum albumin levels Hypoalbuminaemia is common
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sensitizing agents, such as thiazolidinedione, alleviate
kidney dysfunction and prevent the further worsening of
kidney functions. Miyazaki et al. [69] showed that type 2
diabetes mellitus patients treated with rosiglitazone for
three months had better insulin sensitivity than the placebo
group, who had higher serum adiponectin concentration
and reduced UAE. An animal experiment showed that
metformin improves metabolic disorders, upregulates renal
AMPK activity, diminishes the expression of renal TNF-α,
decreases renal lipid accumulation, and prevents renal
injury [70].
Several animal trials were conducted to discover

potential drugs for ORG treatment. Antioxidants, such as
SS-31, lycopene, and melatonin, were studied recently.
Szeto et al. demonstrated that mitochondrial dysfunction is
the cause of HFD-induced renal pathology. Herman-
Edelstein et al. [35] suggested that renal lipid metabolism
might be a target for specific therapies aimed at slowing the
progression of glomerulosclerosis. Furthermore, SS-31
prevents the loss of glomerular endothelial cells and
podocytes, mesangial expansion, glomerulosclerosis,
macrophage infiltration, and upregulation of proinflamma-
tory (TNF-α, MCP-1, nuclear factor k B (NF-kB)) and
profibrotic (TGF-β) cytokines. SS-31 is a tetrapeptide that
targets cardiolipin, protects mitochondrial cristae structure,
and effectively prevents HFD-related renal pathology
[33,71]. Meanwhile, targeting the mitochondria may
provide a novel strategy for ORG therapy [33]. Pierine
et al. demonstrated that lycopene might be beneficial in
preventing and treating oxidative stress and inflammation
in ORG by inhibiting NF-kB and TNF-α [72]. Melatonin
has a critical role in the prevention of oxidative
mitochondrial damage and exerts beneficial effects on
mitochondrial morphology and dynamics [73]. Wang et al.
[74] confirmed that a low dose of acetaminophen decreases
renal lipid deposition, ER-stress related signaling, apopto-
sis, and albuminuria. These experimental interventions are
still in the animal experiment stage and far from human
applications. More related research is needed to evaluate
the safety and effectiveness of these interventions in
human treatment.

Conclusions

We reviewed the clinical and pathological characteristics
and pathogenesis of ORG and treatment strategies for this
condition. ORG is characterized by glomerulomegaly in
the presence or absence of FSGS lesions. Renal hemody-
namic changes, renin-angiotensin-aldosterone system,
insulin resistance, mitochondrial dysfunction, inflamma-
tion, and abnormal lipid metabolism can all contribute to
ORG progression. Although subnephrotic proteinuria is
the most common ORG manifestation, less than half of
ORG patients have nephrotic-range proteinuria. Further-

more, up to one-third of these patients develop progressive
renal failure and ESRD, although the clinical course is
characterized by stable or slow and progressive protei-
nuria. Control of obesity and other methods, such as RAAS
blockage, can relieve ORG. However, owing to the
increase in ORG cases, more studies are necessary to
understand the disease.
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