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SUMMARY

Severe obesity is a rapidly growing global health
threat. Although often attributed to unhealthy life-
style choices or environmental factors, obesity is
known to be heritable and highly polygenic; the
majority of inherited susceptibility is related to the
cumulative effect of many common DNA variants.
Here we derive and validate a new polygenic predic-
tor comprised of 2.1 million common variants to
quantify this susceptibility and test this predictor in
more than 300,000 individuals ranging from middle
age to birth. Among middle-aged adults, we observe
a 13-kg gradient in weight and a 25-fold gradient in
risk of severe obesity across polygenic score deciles.
In a longitudinal birth cohort, we note minimal differ-
ences in birthweight across score deciles, but a
significant gradient emerged in early childhood and
reached 12 kg by 18 years of age. This new approach
to quantify inherited susceptibility to obesity affords
new opportunities for clinical prevention and mecha-
nistic assessment.

INTRODUCTION

Severe obesity, defined as a BMI of 40 kg/m2 ormore, is a rapidly

growing public health issue already afflicting 8% of American

adults (Flegal et al., 2016; National Institutes of Health, 1998).

Although present in less than 1% of the population in middle-
Cell 1
income countries such as India and China, the prevalence of

severe obesity in these countries has increased more than

100-fold over the last three decades and shows no signs of slow-

ing (NCD Risk Factor Collaboration (NCD-RisC), 2017). Individ-

uals with severe obesity are often stigmatized because of the

commonly held belief that their condition results primarily from

unhealthy lifestyle choices (Tomiyama et al., 2018). However,

obesity is known to be heritable, suggesting that inborn DNA

variation confers increased susceptibility in some individuals

and protection in others (Elks et al., 2012; Maes et al., 1997;

Whitaker et al., 1997; Yang et al., 2015).

Inherited susceptibility to obesity can, in rare cases, be attrib-

uted to a large-effect mutation that perturbs energy homeostasis

or fat deposition (Barsh et al., 2000). For example, genetic inac-

tivation of the melanocortin 4 receptor (MC4R) gene is associ-

ated with obesity in both mouse models and humans (Farooqi

et al., 2003; Huszar et al., 1997; Vaisse et al., 1998; Yeo et al.,

1998). However, for the vast majority of severely obese individ-

uals, no such monogenic mutation can be identified (Larsen

et al., 2005; Stutzmann et al., 2008; Vaisse et al., 2000). Their ge-

netic susceptibility may instead result from the cumulative ef-

fects of numerous variants with individually modest effects—a

‘‘polygenic’’ model. This paradigm is similar to other complex

diseases in which polygenic inheritance, involving many com-

mon genetic variants, accounts for the majority of inherited sus-

ceptibility (Golan et al., 2014; Purcell et al., 2009; Visscher et al.,

2012; Yang et al., 2011; Zhu et al., 2015).

A recently published genome-wide association study (GWAS)

quantified the relationship between each of 2.1 million common

genetic variants and BMI in over 300,000 individuals (Locke

et al., 2015). None of the individual variants account for a large
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Association statistics for impact of 
2,100,302 variants on BMI from previously 
published genome-wide association study

Choose best polygenic score based on 
maximal correlation with BMI in the UK 
Biobank validation dataset (N = 119,951)

Assess association of best polygenic score 
with BMI, weight, and obesity outcomes in four 
independent datasets (N = 306,135), ranging 
from birth to middle age.
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Figure 1. Derivation, Validation, and Testing

of a Genome-wide Polygenic Score for

Obesity

A genome-wide polygenic score (GPS) for obesity

was derived by starting with two independent

datasets: first, a list of 2,100,302 common genetic

variants and estimated effect of each on BMI from

a large GWAS study (Locke et al., 2015) and sec-

ond, genetic information from 503 individuals of

European ancestry from the 1000 Genomes Study

used to measure ‘‘linkage disequilibrium,’’ the

correlation between genetic variants (1000 Ge-

nomes Project Consortium et al., 2015). Candidate

GPSs were derived using the LDPred computa-

tional algorithm, a Bayesian approach to calculate

a posterior mean effect for all variants based on

prior (effect size and statistical significance in the

previous GWAS) and subsequent shrinkage based

on linkage disequilibrium (Vilhjálmsson et al.,

2015). The five candidate LDPred scores vary with

respect to the tuning parameter r (that is, the

proportion of variants assumed to be causal), as

recommended previously. A sixth polygenic score

was derived based on only the 141 independent variants that had achieved genome-wide levels of statistical significance in the previous GWAS. The optimal GPS

was chosen based on maximal correlation with BMI in the UK Biobank validation dataset (n = 119,951 Europeans) and subsequently tested in multiple inde-

pendent testing datasets of 306,135 individuals.

See also Tables S1–S3.
proportion of the phenotype. The strongest association was

noted for a common variant at the FTO locus; the risk allele

was associated with a statistically robust but clinically modest

increase in weight of approximately 1 kg per inherited risk allele.

Obtaining meaningful predictive power thus requires aggre-

gating information from many common variants into a polygenic

score (Chatterjee et al., 2016; Khera et al., 2018). However, pre-

vious efforts to create an effective polygenic score for obesity

have had only modest success (Loos and Janssens, 2017).

Here we use recently developed computational algorithms

and large datasets to derive, validate, and test a robust poly-

genic predictor of BMI and obesity. This genome-wide polygenic

score (GPS) integrates all available common variants into a sin-

gle quantitative measure of inherited susceptibility. It identifies

a subset of the adult population that is at substantial risk of se-

vere obesity—in some cases equivalent to rare monogenic mu-

tations—and others that enjoy considerable protection. TheGPS

is associated with only minimal differences in birthweight, but it

predicts clear differences in weight during early childhood and

profound differences in weight trajectory and risk of developing

severe obesity in subsequent years.

RESULTS

To create a GPS, we obtained the average effects for each of

2,100,302 genetic variants on BMI from the largest published

GWAS study of obesity to date (Locke et al., 2015). We used a

recently developed computational algorithm to reweight each

variant according to the effect size and strength of statistical sig-

nificance observed in the prior GWAS, the degree of correlation

between a variant and others nearby, and a tuning parameter

that denotes the proportion of variants with non-zero effect

size (Vilhjálmsson et al., 2015). Because the best choice of
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this tuning parameter is difficult to know a priori, a range of

5 values was tested, as recommended previously (Vilhjálmsson

et al., 2015).

We set out to validate these 5 scores and to choose the best

score for further analysis by testing their ability to predict

measured BMI in a validation dataset of 119,951 middle-aged

adult participants of the UK Biobank. The UK Biobank enrolled

participants aged 40 to 69 years from across the United

Kingdom and allows linkage of measurements such as BMI to

extensive genetic data (Bycroft et al., 2018; Sudlow et al.,

2015). Within this dataset, we estimated the heritability of BMI

explained by common variants to be 23.4% using a recently

developed approach (Bulik-Sullivan et al., 2015), consistent

with prior estimates ranging from 17% to 27% (Yang et al.,

2011, 2015; Zhu et al., 2015).

Each of the five candidate GPSs was strongly associated with

observed BMI (p < 0.0001), with similar correlation coefficients

ranging from 0.283 to 0.292 (Table S1). Nearly identical results

were obtained after adjustment of each of the candidate GPSs

for genetic background, as assessed by principal components

of ancestry (Table S2). We selected the best score, with a corre-

lation of 0.292, to take forward into four testing datasets below.

Additional details of GPS derivation and validation are provided

in Figure 1 and the STAR Methods.

Our GPS of 2,100,302 variants had substantially greater pre-

dictive power than a sixth polygenic score comprised of only

the 141 independent variants that had reached genome-wide

levels of statistical significance in the prior GWAS. Within the

119,951 participants in the validation dataset, correlation with

BMI for this 141-variant score was only 0.133. This lower

strength of association using fewer variants is consistent with

earlier studies, where predictors of up to 97 variants had a rela-

tively low correlation with measured BMI, ranging from 0.01 to



Table 1. Genome-wide Polygenic Score for Obesity, Assessed in Four Independent Testing Datasets

UK Biobank

Partners

HealthCare

Framingham

Offspring/CARDIA

Avon Longitudinal Study of

Parents and Children

n participants 288,016 6,536 3,722 7,861

Study design cross-sectional case-control longitudinal longitudinal

Age range 40–69 years R18 years 18–40 years birth

Female sex 55% 61% 48% 49%

Outcomes weight, severe obesity,

bariatric surgery,

cardiometabolic diseases,

mortality

bariatric surgery incident severe obesity

(27 years median follow-up)

weight at birth and subsequent

visits (0–18 years)

CARDIA, Coronary Artery Risk Development in Young Adults.
0.12 (Belsky et al., 2013; Hung et al., 2015; Li et al., 2010; Sand-

holt et al., 2010).

Having derived and validated a new polygenic predictor that

considerably outperformed earlier scores, we explored the pre-

dictive power of the GPS on BMI, weight, and severe obesity in

306,135 individuals of four independent testing datasets, span-

ning an age spectrum from middle age to time of birth (Table 1).

Polygenic Susceptibility toWeight and SevereObesity in
Middle Age
We determined the extent to which the GPS predicted weight

and severe obesity in a testing dataset of 288,016 middle-aged

participants of the UK Biobank (independent of the 119,951 vali-

dation dataset participants studied above). The participant mean

age was 57 years, and 55% were female. The mean weight was

78.1 kg, and the mean BMI was 27.4 kg/m2. 23.9% of the partic-

ipants were obese (BMI R 30 kg/m2), and 1.8% met criteria for

severe obesity.

The GPS approximated a normal distribution in the population

(Figure S1). The correlation of the GPS and observed BMI was

0.29, identical to the UK Biobank validation dataset. Correlations

were similar when participants were stratified into 5-year age

bins, ranging from 0.28 to 0.31 (Table S3).

We next stratified the population according to GPS decile and

found a striking gradient with respect to BMI, weight, and prev-

alence of obesity (Figures 2A–2C). For example, the average

BMI was 30.0 kg/m2 for those in the top decile of the GPS

and 25.2 kg/m2 for those in the bottom decile, a difference of

4.8 kg/m2 (p < 0.0001). Similarly, the average weight was

85.3 kg for those in the top decile versus 72.2 kg for those in

the bottom decile, a difference of 13.0 kg (p < 0.0001). 43.2%

of those in the top decile were obese versus 9.5% of those in

the bottom decile (Figure S2). Severe obesity was present in

1,621 of 28,784 (5.6%) in the top decile of the GPS versus 69

of 28,834 (0.2%) in the bottom decile, corresponding to a

25-fold gradient in risk of severe obesity (p < 0.0001).

Despite the strength of these associations, polygenic suscep-

tibility to obesity is not deterministic. Among those in the top

decile of the GPS, 83% were overweight or obese, but 17%

had a BMI within the normal range, and 0.2% were underweight

(Figure 2D). These results were nearly identical after adjustment

of the GPS for genetic background, as assessed by principal

components of ancestry (Figure S3).
A High Polygenic Score Is Common among Those with
Extreme Obesity
Traditional analyses of rare genetic mutations are performed by

comparing heterozygous mutation carriers with noncarriers. An

important example is the p.Tyr35Ter premature stop codon in

MC4R present in 0.02% of the population and typically inherited

as a shared haplotype with the p.Asp37Val missense mutation,

which has been shown previously to completely inactivate

MC4R activity in in vitro functional assays (Larsen et al., 2005;

Xiang et al., 2006). A recent analysis linked this variant to an

average weight increase of 7 kg (Turcot et al., 2018).

We sought to mimic this approach using the GPS by labeling

the top decile of the GPS distribution as ‘‘carriers’’ and those

in the remainder of the distribution as non-carriers (Figure 3A).

The 10% of the population who carried a ‘‘high GPS’’ demon-

strated an average BMI that was 2.9 kg/m2 higher and a weight

8.0 kg higher than noncarriers (p < 0.0001 for both compari-

sons). The results were similar when high-GPS carriers were

compared with individuals within the middle quintile of the

score distribution instead of the bottom 90% of the distribution,

with differences in BMI and weight of 2.6 kg/m2 and 7.4 kg,

respectively.

Furthermore, the magnitude of risk conferred by a high GPS

increased at more extreme levels of observed obesity. The pro-

portion of high-GPS carriers was 9.7% among individuals with a

BMI of less than 40 kg/m2, 31%among the 5,232 individuals with

a BMI of 40 kg/m2 or more, 42.3% among the 331 individuals

with a BMI of 50 kg/m2 or more, and 61.5% among the 26 indi-

viduals with a BMI of 60 kg/m2 or more. Compared with the

remainder of the GPS distribution, a high GPS was associated

with a 4.2-, 6.6-, and 14.4-fold increased risk of a BMI of 40,

50, and 60 kg/m2 or more, respectively (Figure 3B).

Another indicator of extreme obesity involves individuals who

undergo treatment with bariatric surgery, acknowledging that

factors in addition to severity of obesity contribute to the deci-

sion to move forward with an invasive procedure to assist with

weight loss. We identified 208 such participants in the UK Bio-

bank testing dataset, of whom 81 (38.9%) carried a high GPS.

This finding was replicated among 714 severely obese patients

treated with bariatric surgery within the Partners HealthCare

System (Hatoum et al., 2013; Karlson et al., 2016). 238 of these

714 (33%) patients carried a high GPS. A combined analysis of

the 922 bariatric surgery participants noted a high GPS in 319
Cell 177, 587–596, April 18, 2019 589
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Figure 2. Relationship of GPS Distribution

with BMI, Weight, and Severe Obesity

(A–D) 288,016 middle-aged UK Biobank partici-

pants were binned into 10 deciles according to the

polygenic score. BMI (A), weight (B), and preva-

lence of severe obesity (C) each increased across

deciles of the polygenic score (p < 0.0001 for

each). Significant differences in clinical categories

of obesity were noted (D) when participants were

stratified into three categories: bottom decile,

deciles 2–9, and top decile. Underweight refers to

a BMI of less than 18.5 kg/m2, normal as 18.5 to

24.9 kg/m2, overweight as 25.0 to 29.9 kg/m2,

obesity as 30.0 to 39.9 kg/m2, and severe obesity

as 40 kg/m2 or more (National Institutes of Health,

1998).

See also Figures S1–S3.
(34.6%). Compared with the remainder of the distribution, a high

GPS was associated with a 5.0-fold increased risk of severe

obesity treated with bariatric surgery (Figure 3B).

A High Polygenic Score Is Associated with Increased
Risks of Cardiometabolic Disease and Mortality
Beyond severe obesity, individuals in the UK Biobank who

carried a high GPS were at increased risk for six common cardi-

ometabolic diseases, including a 28% increased risk of coronary

artery disease, a 72% increased risk for diabetes mellitus, a 38%

increased risk for hypertension, a 34% increased risk for

congestive heart failure, a 23% increased risk for ischemic

stroke, and a 41% increased risk for venous thromboembolism

(p < 0.05 for each; Figure 4).

We next determined the relationship between a high polygenic

score and all-cause mortality. Death following enrollment

occurred in 8,102 (2.8%) participants over a median follow-up

of 7.1 years, including 940 (3.3%) of those in the top decile

of the polygenic score distribution and 7,162 (2.8%) in the

remainder of the distribution (p < 0.0001). In a survival analysis

that additionally included time to death in the statistical model,

a high polygenic score was associated with a 19% increased

risk of incident mortality (p < 0.0001).

The Polygenic Score Identifies 1.6% of the Population
with a BMI Increase Similar to a Monogenic Mutation
Rare inactivating mutations in the MC4R gene are among the

most common monogenic mutations for obesity (Farooqi et al.,

2003; Stutzmann et al., 2008; Vaisse et al., 2000), but few prior

studies have analyzed gene sequencing data and performed
590 Cell 177, 587–596, April 18, 2019
clinical-grade variant classification in a

large population of unascertained adults.

We performed whole-exome

sequencing of 6,547 UK Biobank par-

ticipants, identifying 24 rare (allele fre-

quency, <1%) protein-altering variants in

the MC4R gene. A total of 54 of the

6,547 individuals (0.8%) harbored one of

these variants. The average BMI of these

54 individuals was 30.8 kg/m2 versus
28.4 kg/m2 in the remainder of the population, a difference of

2.4 kg/m2 (95% confidence interval [CI], 1.0 to 3.7; p = 0.001).

Given that themajority of raremissensemutations have little or

no functional effect on protein function (Boyko et al., 2008; Yam-

polsky et al., 2005), a clinical laboratory geneticist on our team

who was blinded to participant phenotypes classified each of

the 24 observed MC4R variants according to current clinical

guidelines (Richards et al., 2015), integrating information from

population allele frequency data, computational prediction and

conservation scores, functional assay data, and prior reports

of the variant segregating with obesity. 4 of these 24 variants

met these clinical criteria as pathogenic or likely pathogenic

for monogenic obesity, including the p.Tyr35Ter premature

stop codon noted above, an inactivating frameshift mutation

(p.Phe280AlafsX12), and two missense mutations (p.Arg165Gln

and p.Glu61Lys) previously shown to segregate with obesity in

family studies and impair receptor activity in functional assays.

A summary of the evidence used to classify each of the 24 vari-

ants is provided in Table S4.

A total of 9 of the 6,547 sequenced individuals harbored one

of the 4 pathogenic MC4R variants, corresponding to a preva-

lence of 0.14% (95% CI, 0.06% to 0.26%). Subsequent un-

blinding of phenotype information revealed that the average

BMI of these 9 carriers was 32.5 kg/m2 compared with

28.4 kg/m2 in the remainder of the population, a difference of

4.1 kg/m2 (95% CI, 0.8 to 7.3; p = 0.02). However, consistent

with recent observations of incomplete penetrance in an adult

population (Turcot et al., 2018), only one of the 9 carriers was

severely obese. An additional 3 were obese, and the remaining

5 were overweight but not obese.
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Figure 3. Association of High GPS with Extreme Obesity and Bariatric Surgery

(A) We considered the top 10% of the distribution as high-GPS carriers, represented by the shading, and compared the risk of obesity-related outcomes with the

remaining 90% of the distribution. The x axis represents the polygenic score, with values scaled to a mean of 0 and SD 1 to facilitate interpretation.

(B) The relationship of high GPS to extreme obesity and treatment with bariatric surgery was quantified using logistic regression. CI, confidence interval.
We hypothesized that individuals in the extreme of the GPS

distribution might have an increase in BMI that approaches or

exceeds the 4.1 kg/m2 increase noted for carriers of pathogenic

MC4Rmutations and tested progressively more extreme tails of

the distribution. The top 1.6%of theGPS distribution had amean

BMI 4.1 kg/m2 higher than the remaining 98.4%—31.4 versus

27.3 kg/m2, and 9.1% of these individuals were severely obese.

Young Adults’ Risk of Developing Severe Obesity Varies
According to Polygenic Score
Although only a small minority of individuals are severely obese

in early adulthood, the prevalence increases rapidly over subse-

quent decades (NCD Risk Factor Collaboration (NCD-RisC),

2017). We hypothesized that the GPS might predict who would

go on to develop severe obesity during the transition from young

adulthood to middle age. We analyzed data from the Framing-

ham Offspring and Coronary Artery Risk Development in Young

Adults (CARDIA) studies, in which participants were weighed at

an initial baseline assessment and at additional study visits

over the subsequent decades (Feinleib et al., 1975; Friedman

et al., 1988). We identified 3,722 young adult participants, none

of whom were severely obese at time of baseline assessment,

in whom GPS calculation was possible. The mean age at base-

line assessment was 28.0 years, 48% were female, and the

mean BMI was 24.2 kg/m2. These individuals were weighed at

up to 8 subsequent visits over a median follow-up of 27 years

to determine the incidence of severe obesity.

Among individuals in the top decile of the GPS, 58 of 371

(15.6%) went on to develop severe obesity compared with

5.6%of those in deciles 2–9 (Figure 5). By contrast, among those

in the lowest decile, only 5 of 372 (1.3%) individuals went on to

develop severe obesity.

The Effect of Polygenic Susceptibility Emerges in Early
Childhood
Given the gradients in weight and severe obesity observed in

adulthood, we next posed the following question: at what age

does this gradient first start to emerge? We explored this ques-

tion in a birth cohort from the United Kingdom, the Avon Longi-
tudinal Study of Parents and Children (ALSPAC) (Boyd et al.,

2013; Fraser et al., 2013). The ALSPAC study recruited pregnant

mothers in the United Kingdom between 1991 and 1992 and fol-

lowed offspring with serial weight assessments from time of birth

to 18 years of age. We identified 7,861 participants with both

weight and genotyping array data available for analysis.

The GPS was associated with only small differences in birth-

weight; the mean was 3.47 kg for those in the top decile

versus 3.41 kg for those in the bottom decile, a difference of

0.06 kg (p = 0.02) (Figures 6A–6F). By 8 years of age, the differ-

ence increased to 3.5 kg (p < 0.0001), with a mean weight of

27.9 versus 24.3 kg. By 18 years of age, the difference reached

12.3 kg (p < 0.0001). Strikingly, this weight difference between

top and bottom GPS deciles at 18 years of age (12.3 kg) was

comparable with that seen in participants in the UK Biobank at

a mean age of 57 years (13.0 kg).

We observed similar results after converting participants’

weights to Z scores—the number of SDs a child’s weight differs

from a population and age-specific normative value (Figure S4).

The difference in Z score between the top and bottom deciles

was 0.11 for birthweight (p = 0.03), but this gradient had

increased to 0.75 by 8 years and 0.90 by 18 years (p < 0.0001).

We modeled the trajectories of weight from birth to 18 years,

stratifying individuals according to the top decile of the GPS dis-

tribution, deciles 2–9, and the bottom decile. This longitudinal

analysis confirmed a separation in weight that starts in early

childhood and continues to diverge into adulthood (Figure S5).

DISCUSSION

We describe a systematic approach to derive and validate a

GPS, incorporating information from 2.1 million common genetic

variants, to predict polygenic susceptibility to obesity and tested

the polygenic score in 306,135 participants from four cohorts.

The GPS accurately predicted striking differences in weight, se-

vere obesity, cardiometabolic disease, and overall mortality in

middle-aged adults, with the extreme of the GPS distribution in-

heriting susceptibility to obesity equivalent to rare monogenic

mutations in MC4R. The score had minimal association with
Cell 177, 587–596, April 18, 2019 591



5.8×10–13

4.2×10–106

1.3×10–112

5.8×10–22

Figure 4. Association of High GPS with Car-

diometabolic Diseases

The relationship of high GPS, defined as the top

decile of the score distribution, with the preva-

lence of six cardiometabolic diseases was deter-

mined in a logistic regression model within the UK

Biobank testing dataset of 288,016 participants.
birthweight, but it was strongly associated with a gradient in

weight that started to emerge in early childhood and even larger

differences in weight and severe obesity in subsequent decades.

The GPS far outperformed a score based only on the 141 var-

iants most strongly associated with BMI, consistent with the

highly polygenic nature of BMI and obesity. For example, in a

direct comparison in 119,951 individuals, we observed a correla-

tion with BMI of 0.29 for the GPS compared with 0.13 with

the 141-variant score. This improved performance using a

genome-wide set of common variants was anticipated by a prior

theoretical projection study based on early GWAS results and an

analysis that indicated minimal ‘‘missing heritability’’ of BMI

when accounting for the full range of observed genetic variation

(Chatterjee et al., 2013; Yang et al., 2015). Here we use a recently

developed computational algorithm that explicitly models the

correlation structure between variants in calculating variant

weights (Vilhjálmsson et al., 2015). This algorithm has been

shown to outperform prior methods for a range of complex traits,
58 / 371 (15.6%)

Figure 5. Association of GPS with Incident Severe Obesity among

Young Adults

Among 3,722 young adults in the Framingham Offspring and Coronary Artery

Risk Development in Young Adults studies, individuals were stratified, based

on their GPS, into three categories: bottom decile, deciles 2–9, and top decile.

Incident severe obesity is plotted according to GPS category over a median

follow-up of 27 years (p < 0.0001 for each between-group comparison).
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including cardiovascular disease, type 2

diabetes, and educational attainment

(Khera et al., 2018; Lee et al., 2018).
The ability to quantify inborn susceptibility using GPSs is likely

to be generalizable across a broad range of complex diseases,

contingent upon availability of a large discovery GWAS, indepen-

dent validation and testing datasets, and the heritability of a

given disease explained by common variants (Torkamani et al.,

2018). Predictive power will likely continue to improve in coming

years as a function of larger discovery GWAS studies and

improved computational algorithms that integrate functional

genomics annotation, variant-variant interactions, and rare

large-effect variants into the predictive model (Chatterjee et al.,

2016; Zhang et al., 2018).

We note that both a pathogenic MC4R mutation and the

extreme of the GPS distribution predisposed individuals to a

BMI 4.1 kg/m2 higher than that of the remainder of the popula-

tion. However, despite an identical effect size, we estimate

that extreme GPSs have a prevalence an order of magnitude

higher than pathogenic MC4R mutations—1.6% versus 0.14%,

respectively.

Both extreme polygenic scores and pathogenic MC4R muta-

tions demonstrate incomplete penetrance; not all carriers mani-

fest severe obesity. This observation is consistent with recent

large-scale gene sequencing studies across a broad range of

complex diseases, including diabetes, cardiovascular disease,

and breast cancer (Flannick et al., 2013; Khera et al., 2016; Man-

ickam et al., 2018). Additional studies of large unascertained

populations are needed to determine whether a larger effect

size for pathogenic MC4R mutations is noted among children

or young adults, as has been suggested in prior reports (Farooqi

et al., 2003; Stutzmann et al., 2008), and the extent to which a

favorable polygenic background can explain the absence of

obesity noted among many mutation carriers.

Genetic risk predictors have important potential implications

for clinical medicine because they identify individuals at risk

before the condition has manifested. For example, individuals

with a high polygenic score for heart attack derive the greatest

benefit from preventive therapy such as cholesterol-lowering

medications, and those with the highest polygenic scores for

breast cancer may benefit from earlier and more intensive

mammography screening (Natarajan et al., 2017; Pharoah

et al., 2008).

Although the average BMI has increased substantially across

populations, so too has the variability within any given popula-

tion, suggesting that an increasingly obesogenic environment

may have led to preferential ‘‘unmasking’’ of inherited suscepti-

bility among those with the highest genetic risk (Smith, 2016; Ya-

novski and Yanovski, 2018). For example, prior studies suggest
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D E F

Figure 6. Association of Obesity GPS Decile with Weight from Birth to 18 Years

(A–F) Within the Avon Longitudinal Study of Parents and Children (ALSPAC) cohort, 7,861 participants were stratified according to decile of the GPS distribution.

The average weight and 95% CI within each decile are displayed at 6 representative ages; the corresponding sample size for the number of participants with

follow-up weight available at each time point is provided: (A) birth; (B) 8months; (C) 18months; (D) 3.5 years; (E) 8 years; and (F) 18 years. The p value for the linear

trend across deciles was 0.003 at birth (A) and less than 0.0001 at all subsequent ages.

See also Figures S4 and S5.
that the effect of unhealthy diet, physical activity, and sedentary

behavior on BMI are most pronounced in those with a genetic

predisposition (Qi et al., 2012, 2014; Tyrrell et al., 2017). The

ability to identify high-risk individuals from the time of birth

may facilitate targeted strategies for obesity prevention with

increased effect or cost-effectiveness. Given that the weight tra-

jectories of individuals in different GPS deciles start to diverge in

early childhood, such interventions may have maximal effect

when employed early in life.

The GPS may also accelerate research insights into the mo-

lecular and physiological basis of severe obesity. Traditional

research approaches have compared the physiology of severely

obese individuals with lean controls. However, it can be difficult

to draw inferences from such studies because the observed dif-

ferences might be either a cause or a consequence of severe

obesity. The GPS permits identification of individuals, from the

time of birth, who inherit high susceptibility and before clinical

disease is manifest. Careful study of individuals at the extremes

of a GPS distribution might uncover new causal risk factors or

pathways underlying disease. For example, healthy individuals

with a high polygenic score for heart attack were enriched

for higher blood pressure, increased cholesterol levels, and

increased rates of type 2 diabetes; each of these is a well-known

and modifiable clinical risk factor (Khera et al., 2019). Similarly,

clinical and multi-omic profiling of those at the extremes of a
GPS distribution for obesity may uncover the contributions and

molecular correlates of pathways related to appetite regulation,

fat storage, and microbiome perturbation and might enable

identification of clinically relevant subtypes of severe obesity

that most benefit from a given pharmacologic or behavioral

intervention.

Individuals who maintain normal weight despite an unfavor-

able GPS or develop severe obesity despite a favorable GPS

may be of particular interest. The discordance between poly-

genic susceptibility and clinical phenotype in these individuals

could result from a disproportionate influence of environment,

the effect of a rare large-effect mutation not captured by the

polygenic score, or other undetermined factors.

Finally, a clear understanding of the genetic predisposition to

obesity may help to destigmatize obesity among patients, their

health care providers, and the general public.

We anticipate that our approach to constructing a robust GPS

predictor of obesity will generalize across a range of common

diseases, raising both important opportunities and potential

challenges for clinical medicine. First, the cohorts studied here

were of European ancestry; future studies are needed to extend

this approach across additional ancestral backgrounds and

ensure equitable implementation into clinical practice. Second,

rare monogenic mutations for conditions such as obesity can

sometimes be treated by precise targeting of the perturbed
Cell 177, 587–596, April 18, 2019 593



pathway (Kühnen et al., 2016). Whether polygenic risk can be

disaggregated into driving pathways within each individual in a

similar fashion remains uncertain (Khera and Kathiresan, 2017).

Last, additional work is needed to optimize genetic risk disclo-

sure and to test whether this disclosure can improve disease

prevention or treatment.
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association statistics

Locke et al., 2015 https://portals.broadinstitute.org/collaboration/giant/

index.php/Main_Page

1000 Genomes Phase 3 1000 Genomes Project

Consortium et al., 2015

http://www.internationalgenome.org/category/phase-3/

Growth Analyzer RCT https://growthanalyser.org/software/growth-analyser-rct/

LDPred Vilhjálmsson et al., 2015 https://github.com/bvilhjal/ldpred

PLINK 2.0 Chang et al., 2015 https://www.cog-genomics.org/plink/2.0/

UK Biobank Sudlow et al., 2015 https://www.ukbiobank.ac.uk/

R statistical software R Project for Statistical

Computing

http://www.R-project.org/

Michigan Imputation Server Das et al., 2016 http://imputationserver.sph.umich.edu/index.html

Other
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Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Sekar

Katherisan (skathiresan1@mgh.harvard.edu).

EXPERIMENTAL MODELS AND SUBJECT DETAILS

Study cohorts
The UK Biobank is a large observational study that enrolled 502,617 individuals aged 40 to 69 years of age from across the United

Kingdom beginning in 2006 (Sudlow et al., 2015). We identified 407,969 individuals of European ancestry with genotyping array and

BMI data available. Individuals in the UK Biobank underwent genotyping with one of two closely related genotyping arrays consisting

of over 800,000 genetic markers scattered across the genome (Bycroft et al., 2018). Additional genotypes were imputed centrally

using the Haplotype Reference Consortium panel version 1.1, the UK10K panel, and the 1000Genomes panel. To analyze individuals

with a relatively homogeneous ancestry and owing to small percentages of non-British individuals, the present analysis was restricted

to the white British ancestry individuals. This subpopulation was constructed centrally using a combination of self-reported ancestry

and genetic confirmation by principal components of ancestry. Additional exclusion criteria included outliers for heterozygosity or

genotype missing rates, discordant reported versus genotypic sex, putative sex chromosome aneuploidy, or withdrawal of informed

consent, derived centrally as previously reported (Bycroft et al., 2018).

The GPS was validated within 119,951 participants of the UK Biobank Phase 1 validation dataset, and subsequently tested in the

remaining 288,016 participants. Avoidance of sample overlap between the validation and testing datasets prevents test statistic infla-

tion (Vilhjálmsson et al., 2015).

Whole exome sequencing was performed at the Broad Institute of MIT and Harvard (Cambridge, MA, USA) in a subset of 6,552 UK

Biobank participants. Libraries were constructed as previously reported (Fisher et al., 2011) and sequenced on an Illumina HiSeq

sequencer with the use of 151 bp paired-end reads. In-solution hybrid selection was performed using the Illumina Nextera Exome

Kit. Aligned non-duplicate reads were locally realigned and base qualities were recalibrated using Genome Analysis Toolkit software

(McKenna et al., 2010; Van der Auwera et al., 2013). Variants were jointly called using Genome Analysis Toolkit HaplotypeCaller soft-

ware. We removed samples with contamination > 10% (n = 0), samples with < 80% of target bases at 20X coverage (n = 3), samples

with discordance between self-reported and genetic sex (n = 0), and samples with discordant reported versus genotypic sex (n = 2).

Mean target coverage among the remaining 6,547 samples was 75X, and 91.4% of target bases were captured at > 20X sequencing

depth. The subset of rare (allele frequency < 1%) variants in the melanocortin 4 receptor gene (MC4R; Ensemble transcript ID:

ENST00000299766) were narrowed to those meeting American College of Medical Genetics and Genomics (ACMG)/Association

of Molecular Pathology (AMP) pathogenic or likely pathogenic criteria by an American Board of Genetics and Genomics
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(AMBGG)-certified clinical laboratory geneticist within the Partners HealthCare Laboratory forMolecular Medicine (Boston,MA, USA)

whowas blinded to any phenotype information (Richards et al., 2015). Among the 24 rare coding variants analyzed, mean sequencing

depth across the 6,547 variants was 80X with a genotype missingness rate of 0%. See also Table S4.

The Partners HealthCare system case-control cohort was assembled using 718 individuals with severely obese individuals of Eu-

ropean ancestry who underwent Roux-en-Y gastric bypass surgery in the Partners HealthCare System (Hatoum et al., 2013). 5,822

controls were derived from a population of European participants of the Partners HealthCare Biobank (Karlson et al., 2016). Control

participants were excluded if they had undergone bariatric surgery or had a Charlson comorbidity index > 3 (Charlson et al., 1987).

Samples were imputed to the Haplotype Reference Consortium panel version 1.1 using the Michigan Imputation Server (Das et al.,

2016; McCarthy et al., 2016).

The Framingham Offspring Study is a prospective cohort study that recruited 5,124 individuals beginning in 1971 (Feinleib et al.,

1975). We identified 2,177 young adults aged 18 to 40 years with available data on BMI. BMI was assessed at baseline and during six

subsequent visits to ascertain incident severe obesity. Individuals with severe obesity at baseline or missing data from subsequent

visits were excluded.

The CARDIA Study is a prospective cohort study of 5,115 black and white participants beginning in 1985 (Friedman et al., 1988).

We analyzed 1,545 white participants aged 18 to 30 years at time of enrollment. BMI was assessed at baseline and up to 8 subse-

quent visits to ascertain incident severe obesity. Individuals with missing baseline BMI, severe obesity at baseline, and pregnant fe-

males were excluded.

The Avon Longitudinal Study of Parents and Children (ALSPAC) is a prospective birth cohort study investigating factors that influ-

ence normal childhood development and growth (Boyd et al., 2013; Fraser et al., 2013). Briefly, 14,541 pregnant women resident in a

defined area of the South West of England, with an expected delivery date of April 1, 1991 and December 31, 1992 were enrolled to

the cohort. Of these, 13,988 live-born children who were still alive 1 year later have been followed-up to date with regular question-

naires and clinical measures, providing behavioral, lifestyle and biological data. For the present analysis, up to 7,861 participants with

both weight and genotyping array data available were included. Weight was assessed at subsequent visits up to age 18 years.

Z scores were computed using the Growth Analyzer RCT program (https://growthanalyser.org/software/growth-analyser-rct/),

with age-specific reference weights derived from the United Kingdom/Northern Ireland reference population. The study website

(http://www.bristol.ac.uk/alspac/researchers/our-data/) contains details of all the data that are available through a fully searchable

data dictionary and variable search tool.

Informed consent and study approval

Ethical approval for the study was obtained from the ALSPAC Ethics and Law Committee and the Local Research Ethics Committee

and written informed consent was obtained from both the parent/guardian and, after the age of 16, children provided written assent.

For the three remaining cohorts, informed consents were obtained by investigators of each study and analysis approved by the Insti-

tutional Review Board of Partners HealthCare (Boston, MA).

METHOD DETAILS

Polygenic score derivation and validation
Polygenic scores provide a quantitative metric of an individuals inherited risk based on the cumulative impact of many common

(minor allele frequency R 1%) variants. Weights are generally assigned to each genetic variant according to the strength of its

association with a given trait (effect estimate). Individuals are scored based on how many risk alleles they have for each variant

(e.g., 0, 1, 2 copies) included in the polygenic score.

For our score derivation, we used summary statistics from a recent genome-wide association study (GWAS) for body mass index

(BMI) including up to 339,224 individuals and a linkage disequilibrium reference panel of 503 European samples from 1000 Genomes

phase 3 version 5 (Locke et al., 2015; 1000 Genomes Project Consortium et al., 2015). DNA polymorphisms with ambiguous strand

(A/T or C/G) were removed from the score derivation.

5 candidate polygenic scores were derived using the LDPred computational algorithm (Vilhjálmsson et al., 2015). This Bayesian

approach calculates a posterior mean effect size for each variant based on a prior and subsequent shrinkage based on the extent

to which this variant is correlated with similarly associated variants in the reference population. The underlying Gaussian distribution

additionally considers the fraction of causal (i.e., non-zero effect sizes) markers via a tuning parameter, r. Because r is unknown for

any given disease, a range of r values, the fraction of causal variants, was used – 1, 0.3, 0.1, 0.03, 0.01. A sixth score was derived with

variants restricted to those meeting genome-wide levels of statistical significance (p < 5 3 10�8) using the linkage disequilibrium-

based clumping procedure in PLINK version 2.0 (Chang et al., 2015). The algorithm identifies a list of independent (r2 < 0.2) variants

with this level of statistical significance.

The 6 candidate polygenic scores were calculated in a validation dataset of 119,951 participants of European ancestry of the UK

Biobank Phase I validation dataset. More than 99% of variants in the GPSs were available for scoring purposes in the validation

dataset with sufficient imputation quality (INFO > 0.3); Table S1. The polygenic score with the strongest correlation with observed
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BMI in the validation dataset was determined based on Pearson correlation, and the best score carried forward into subsequent an-

alyses in independent testing datasets. A sensitivity analysis that included adjustment for genetic background was performed as

described previously (Khera et al., 2019). In brief, we fit a linear regression model using the first ten principal components of ancestry

to predict polygenic score. The residual from this model was used to create an ancestry-corrected polygenic score.

UK Biobank Phenotypes
Within the UK Biobank, severe obesity was defined as BMI R 40 kg/m2 (National Institutes of Health, 1998). Additional phenotypes

with respect to disease status and bariatric surgery were ascertained via linkage to data based on self-report in an interview with a

trained nurse, and diagnosis and procedure codeswithin the electronic health record. Bariatric surgery status was ascertained based

on having a OPCS-4 primary procedure code for Roux-en-Y gastric bypass, sleeve gastrectomy, or duodenal switch procedure

(G28.1-5, G31.2, G 32.1, G33.1, G71.6).

With respect to additional classification of prevalent cardiometabolic diseases in UK Biobank participants, coronary artery disease

ascertainment was based on a composite of myocardial infarction or coronary revascularization. Myocardial infarction was based on

self-report or hospital admission diagnosis, as performed centrally by the UK Biobank. This included individuals with International

Classification of Diseases (ICD)-9 codes of 410.X, 411.0, 412.X, 429.79 or ICD-10 codes of I21.X, I22.X, I23.X, I24.1, I25.2 in hospi-

talization records. Coronary revascularization was assessed based on an OPCS-4 coded procedure for coronary artery bypass

grafting (K40.1–40.4, K41.1–41.4, K45.1–45.5) or coronary angioplasty with or without stenting (K49.1–49.2, K49.8–49.9, K50.2,

K75.1–75.4, K75.8–75.9). Diabetes mellitus ascertainment was based on a composite of self-report, use of insulin, ICD-9 codes

of 250.X or ICD-10 codes of E10.X, E11.X, E12.X, E 13.X, E14.X in hospitalization records. Hypertension ascertainment was based

on self-report, ICD-9 codes of 40.X or ICD-10 codes of I10, I11.X, I 12.X, I13.X, or I15.X in hospitalization records. Congestive heart

failure was ascertained based on self-report, ICD-9 codes of 425.4, 428.0, 428.1, 428.9 or ICD-10 codes of I11.0, I13.0, I13.2, I25.5,

I42.X in hospitalization records. Ischemic stroke was ascertained centrally based on self-report or hospitalization admission diag-

nosis of ICD-9 codes 430, 431, 434, or 436 and ICD-10 codes of I60, I61, I63, I64. Venous thromboembolism was diagnosed based

on self-report, ICD-9 codes of 415.1, 451.1, ICD-10 codes of I26.X, I80.X, I82.X in the hospitalization records or insertion of an IVC

filter or open thrombectomy of lower-extremity veins in procedure registries.

QUANTIFICATION AND STATISTICAL ANALYSIS

We estimated the heritability of BMI based on common variation within the validation set of the UK Biobank composed of 119,951

European individuals. We used previously recommended parameters suggested for heritability assessment using LD-score regres-

sion (Bulik-Sullivan et al., 2015). In brief, we tested for an association between 1,163,095 common variants that were well-imputed

and available in HapMap3 (minor allele frequency > 0.01, imputation INFO > 0.9) and BMI using a linear regressionmodel adjusted for

age, sex, genotyping array, and the first 10 principal components of ancestry. We then estimated heritability using the resulting as-

sociation statistics and a linkage disequilibrium reference panel of individuals of European ancestry from the 1000 Genomes Study

(1000 Genomes Project Consortium et al., 2015).

Within each of the four testing cohorts, genotyping array data was imputed and a GPS calculated for each individual. Scores were

generated by multiplying the genotype dosage of each risk allele for each variant by its respective weight, and then summing across

all variants in the score. Incorporating genotype dosages accounts for uncertainty in genotype imputation. Scoring was done using

the PLINK2 software program (Chang et al., 2015).Within the UKBiobank, participants were stratified according to decile of the GPS.

Average weight and prevalence of severe obesity was determined within each decile. The relationship of high polygenic score,

defined as the top decile of the GPS, with severe obesity and treatment with bariatric surgery was next determined in both the

UK Biobank and Partners HealthCare system cohorts using logistic regression.

Associations of high polygenic score with severe obesity, bariatric surgery, and six cardiometabolic diseases, were determined

using logistic regression models. Association with incident all-cause mortality was determined using a Cox regression model survival

analysis.

The incidence of severe obesity among young adults according to GPS category was assessed in the Framingham Offspring and

CARDIA studies using an unadjusted Kaplan-Meier survival analysis.

Within the ALSPAC cohort, individuals were stratified according to GPS decile and mean weights determined within each of 6

representative ages. P values for linear trend were assessed using GPS decile as a predictor of observed weight at each age. Linear

spline multi-level models were used to examine the association between the polygenic score and change in weight from birth to

18 years. Multi-level models estimate the mean trajectories of weight while accounting for non-independence of repeated-measures

within individuals, change in scale and variance of measures over time, differences in the number and timing of measurements be-

tween individuals (using all available data from all eligible participants under a missing-at-random assumption) (Howe et al., 2016;

Tilling et al., 2014). Linear splines allow knot points to be fitted at different ages to derive periods of change that are approximately

linear. All participants with at least one measure of weight were included under a missing-at-random assumption to minimize selec-

tion bias in trajectories estimated using linear spline multi-level models (with two levels: measurement occasion and individual). Knot
Cell 177, 587–596.e1–e4, April 18, 2019 e3



points were placed at ages 1, 8 and 15 years based on the distribution and longitudinal pattern of weight measures between birth and

18 years. All trajectories were models in MLwiN version 3.01 (Charlton et al., 2019) called from Stata version 15 using the ‘‘runmlwin’’

command (Leckie and Charlton, 2013).

Statistical analyses were conducted using R version 3.4.3 software (The R Foundation) and Stata version 15.

DATA AND SOFTWARE AVAILABILITY

The GPS validated and tested here has beenmade available to the research community via download at: http://www.broadcvdi.org/

informational/data.
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Figure S1. Distribution of the Genome-wide Polygenic Score for Obesity, Related to Figure 2

The distribution of the genome-wide polygenic score (GPS) in 288,016 participants of the UK Biobank testing dataset is displayed. The x axis represents the

polygenic score, with values scaled to a mean of 0 and standard deviation 1 to facilitate interpretation.



Figure S2. Relationship of Genome-wide Polygenic Score Distribution with Obesity, Related to Figure 2

288,016 middle-aged UK Biobank participants were binned into 10 deciles according to the polygenic score, with significant differences in the prevalence of

obesity (body mass index R 30 kg/m2) noted across deciles of the polygenic score (p < 0.0001).



Figure S3. Relationship of Genome-wide Polygenic Score Distribution with BMI, Weight, and Severe Obesity, Including Adjustment for

Principal Components of Ancestry, Related to Figure 2

A sensitivity analysis was performed after adjustment of the genome-wide polygenic score for genetic background, as assessed by the first ten principal

components of ancestry. 288,016middle-agedUKBiobank participants were binned into 10 deciles according to this ancestry-adjusted genome-wide polygenic

score. Body mass index (Panel A), weight (Panel B), and prevalence of severe obesity (Panel C) each increased across deciles of the polygenic score (p < 0.0001

for each). Significant differences in clinical categories of obesity were noted (Panel D) when participants were stratified into three categories – bottom decile,

deciles 2-9, and top decile. Underweight refers to BMI < 18.5 kg/m2, normal as 18.5 to 24.9 kg/m2, overweight as 25.0 to 29.9 kg/m2, obesity as 30.0 to

39.9 kg/m2, and severe obesity as R 40 kg/m2.



Figure S4. Association of Obesity GPS Decile with Weight Z Scores from Birth to 18 Years, Related to Figure 6

Within the Avon Longitudinal Study of Parents and Children (ALSPAC) cohort, 7,861 participants were stratified according to decile of the GPS distribution.

Average z-score and 95% confidence interval within each decile is displayed at 6 representative ages; corresponding sample size for number of participants

with follow-up weight available at each time point is provided (Panels A-F). P value for linear trend across deciles was 0.003 at birth (A) and < 0.0001 at all

subsequent ages.



Figure S5. Association of GPS with Longitudinal Weight Trajectory from Birth to 18 Years, Related to Figure 6

Among 7,861 participants of the Avon Longitudinal Study of Parents and Children (ALSPAC) cohort, individual were stratified based on their GPS into three

categories – bottom decile, deciles 2-9, and top decile. Longitudinal weight trajectories from birth to 18 years were modeled using linear spline multi-level models

with knot points.
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